精英家教网 > 初中数学 > 题目详情
11.在建筑工地我们经常可看见如图所示用木条EF固定长方形门框ABCD的情形,这种做法根据是(  )
A.两点之间线段最短B.两点确定一条直线
C.长方形的四个角都是直角D.三角形的稳定性

分析 根据三角形的稳定性,可直接选择.

解答 解:加上EF后,原图形中具有△AEF了,故这种做法根据的是三角形的稳定性.
故选D.

点评 本题考查三角形稳定性的实际应用,三角形的稳定性在实际生活中有着广泛的应用,要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.如图:已知反比例函数y=$\frac{{k}_{1}}{x}$与一次函数y=k2x+b的图象交于A(2,-1),B($-\frac{1}{2},m$).
(1)求k1、k2,b的值;
(2)求三角形AOB的面积;
(3)若M(x1,y1),N(x2,y2)是反比例函数y=$\frac{{k}_{1}}{x}$图象上的两点,且x1<x2,y1>y2,指出M、N各位于哪个象限,并简单说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.∠A=30.58°,用度、分、秒表示∠A的余角为59°25′12″.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知线段AB和点O,画出线段AB关于点O的中心对称图形,保留必要的作图痕迹,并完成填空:
解:
(1)连结AO,BO,并延长AO到点C,延长BO到点D,使得OC=OA,OD=OB.
(2)连结CD.
线段CD即为所求.
观察作图结果,你认为线段AB与线段CD的位置关系是AB∥CD.
理由如下:
依作图过程可证△ABO≌△CDO.
证明三角形全等所依据的判定定理简称为SAS.
由三角形全等可得∠A=∠C.
从而根据内错角相等两直线平行判定出线段AB与CD的位置关系.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.计算:($\sqrt{18}$-$\sqrt{8}$)÷$\sqrt{2}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,直线AB与CD相交于点O,OD平分∠BOE,∠FOD=90°,问OF是∠AOE的平分线吗?请你补充完整小红的解答过程.
探究:
(1)当∠BOE=70°时,
∠BOD=∠DOE=$\frac{1}{2}×70°=35°$,
∠EOF=90°-∠DOE=55°,
而∠AOF+∠FOD+∠BOD=180°,
所以∠AOF+∠BOD=180°-∠FOD=90°,
所以∠AOF=90°-∠BOD=55°,
所以∠EOF=∠AOF,OF是∠AOE的平分线.
(2)参考上面(1)的解答过程,请你证明,当∠BOE为任意角度时,OF是∠AOE的平分线.
(3)直接写出与∠AOF互余的所有角.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.数学活动
如图1所示,A(0,6),C(0,3)两点在y轴的正半轴上,B、D两点在x轴的正半轴上.△AOB、△COD的面积均为6.
动手操作:
(1)在上述平面直角坐标系中,以O为顶点,再画出面积为6的4个直角三角形,使得该三角形的其余两个顶点分别在x轴的正半轴、y轴的正半轴上.
(2)取出上述6个直角三角形斜边的中点,并把这6个点用平滑曲线顺次连接起来.
感悟发现:
(1)观察图1中所画曲线,它是我们学过的反比例函数图象,其函数的解析式是y=$\frac{3}{x}$(x>0).
(2)如图2,△EOF的面积为S(S为常数),保持△EOF的面积不变,使点E和F分别在y轴、x轴上滑动(点E、F不与O点重合),在E和F滑动的过程中,EF的中点P所构成的函数图象的解析式是y=$\frac{S}{2x}$(x>0)或y=-$\frac{S}{2x}$(x<0).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.计算:($\frac{{b}^{3}}{{a}^{-2}}$)-2=$\frac{1}{{a}^{4}{b}^{6}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.解方程:$\frac{5}{{x}^{2}-2x}$-$\frac{4}{{x}^{2}+2x}$=$\frac{3}{{x}^{2}-4}$.

查看答案和解析>>

同步练习册答案