【题目】问题:探究一次函数y=kx+k+2(k是不为0常数)图象的共性特点,探究过程:小明尝试把x=-1代入时,发现可以消去k,竟然求出了y=2.老师问:结合一次函数图象,这说明了什么?小组讨论得出:无论k取何值,一次函数y=kx+k+2的图象一定经过定点(-1,2),老师:如果一次函数的图象是经过某一个定点的直线,那么我们把像这样的一次函数的图象定义为“点旋转直线”.已知一次函数y=(k+3)x+(k-1)的图象是“点旋转直线”
(1)一次函数y=(k+3)x+(k-1)的图象经过的定点P的坐标是__________.
(2)已知一次函数y=(k+3)x+(k-1)的图象与x轴、y轴分别相交于点A、B
①若△OBP的面积为3,求k值;
②若△AOB的面积为1,求k值.
【答案】(1)(-1,-4);(2)①k=7或-5;②k=5或-1.
【解析】
(1)先把一次函数y=(k+3)x+(k-1)整理为y=k(x+1)+3x-1的形式,再令x+1=0,求出y的值即可;
(2)先用k表示出AB的坐标,再根据三角形的面积公式即可得出结论.
(1)∵一次函数y=(k+3)x+(k-1)整理为y=k(x+1)+3x-1的形式,
∴令x+1=0,则x=-1,
∴y=-4,
∴P(-1,-4).
故答案为:(-1,-4);
(2)∵一次函数y=(k+3)x+(k-1)的图象与x轴、y轴分别相交于点A、B
∴A(,0),B(0,k-1).
①∵△OBP的面积为3,
∴|k-1|=3,解得k=7或-5;
②∵△AOB的面积为1,
∴×|k-1|×||=1,解得k=5或-1.
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,E、 F分别为边AB、CD的中点,BD是对角线.过点有作AG∥DB交CB的延长线于点G.
(1)求证:△ADE≌△CBF;
(2)若∠G=90° ,求证:四边形DEBF是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下面的点阵图和相应的等式,探究其中的规律:
(1)在④和⑤后面的横线上分别写出相应的等式;
(2)试用含有n的式子表示第n个等式: ;(n为正整数)
(3)请用上述规律计算:
①1+3+5+…+49;
②101+103+105+…+197+199.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2015湖州)如图,已知抛物线C1:和C2:都经过原点,顶点分别为A,B,与x轴的另一交点分别为M,N,如果点A与点B,点M与点N都关于原点O成中心对称,则称抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM恰好是矩形,你所写的一对抛物线解析式是____________________和__________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是Rt△ABC的外接圆,AB为直径,∠ABC=30°,CD是⊙O的切线,E为AC延长线上一点,ED⊥AB于F.
(1)判断△DCE的形状;
(2)设⊙O的半径为1,且OF=,求证:△DCE≌△OCB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆货车从仓库O出发在东西街道上运送水果,规定向东为正方向,一次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库O,货车行驶的记录(单位:千米)如下:+2,+3,﹣6,﹣1,﹣2,+4.请问:
(1)请以仓库O为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;
(2)试求出该货车共行驶了多少千米?
(3)如果货车运送的水果以100千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣15,+25,﹣10,﹣20,则该货车运送的水果总重量是多少千克?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com