【题目】如图,在△ABC 中,AB=AC,∠C=70°,△AB′C′与△ABC 关于直线 EF对称,∠CAF=10°,连接 BB′,则∠ABB′的度数是( )
A. 30° B. 35° C. 40° D. 45°
科目:初中数学 来源: 题型:
【题目】如图所示,有一座抛物线形拱桥,桥下面在正常水位时,AB宽20 m,水位上升到警戒线CD时,CD到拱桥顶E的距离仅为1 m,这时水面宽度为10 m.
(1)在如图所示的坐标系中求抛物线的解析式;
(2)若洪水到来时,水位以每小时0.3 m的速度上升,从正常水位开始,持续多少小时到达警戒线?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据题意,解答问题:
(1)如图1,已知直线y=2x+4与x轴、y轴分别交于A、B两点,求线段AB的长.
(2)如图2,类比(1)的解题过程,请你通过构造直角三角形的方法,求出点M(3,4)与点N(﹣2,﹣1)之间的距离.
(3)在(2)的基础上,若有一点D在x轴上运动,当满足DM=DN时,请求出此时点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC在平面直角坐标系中的位置如图所示,先将△ABC向右平移3个单位,再向下平移1个单位到△A1B1C1,△A1B1C1和△A2B2C2关于x轴对称
(1)画出△A1B1C1和△A2B2C2
(2)在x轴上确定一点P,使BP+A1P的值最小,直接写出P的坐标为________
(3)点Q在坐标轴上且满足△ACQ为等腰三角形,则这样的Q点有 个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B=100° ,按要求完成画图并解答问题:
(1)画出△ABC的高CE,中线AF,角平分线BD,且AF所在直线交CE于点H,BD与AF相交于点G;
(2)若∠FAB=40°,求∠AFB的度数和∠BCE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图1,直线l1∥x轴,直线l2为第一、三象限的角平分线,直线l1与l2相交于A(3,3),点B为直越l1上一点,点C为x轴上一点,P(x,y)为一动点.
(1)当点P(x,y)在x轴上时,y= ,当点P(x,y)在直线l1上,y= ,当点P(x,y)在直线l2上时y= .
如图1,当点P在直线l1下方、x轴上方、直线l2左上方区域时,x,y满足如下条件:,则∠APO,∠PAB,∠POC的数量关系是 .
如图2,当点P在直线l1下方、x轴上方、直线l2右下方区域时,x,y满足如下条件:,则∠APO,∠PAB,∠POC的数量关系是 .
(2)当点P在直线l1上方区域,且点P不在直线l2时,x,y满足的条件为:,请画出图形,猜想∠APO,∠PAB,∠POC的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.
(1)求证:△ADE≌△ABF;
(2)填空:△ABF可以由△ADE绕旋转中心 点,按顺时针方向旋转 度得到;
(3)若BC=8,DE=6,求△AEF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知E、F是□ABCD对角线AC上的两点,且BE⊥AC,DF⊥AC.
(1)请写出图中全等三角形(不再添加辅助线).
(2)求证:△ABE≌△CDF;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),在和中,为边上一点,平分,,.
(1)求证:
(2)如图(2),若,连接交于,为边上一点,满足,连接交于. ①求的度数;
②若平分,试说明:平分.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com