Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬µãOÊÇ×ø±êÔ­µã£¬ËıßÐÎABCDÊÇÁâÐΣ¬µãB¡¢µãCÔÚxÖáÉÏ£¬µãAÔÚyÖáÉÏ£¬BD½»yÖáÓÚµãM£¬µãAµÄ×ø±êΪ£¨0£¬4£©£¬µãBµÄ×ø±êΪ£¨-3£¬0£©£®
£¨1£©ÇóÖ±ÏßBDµÄ½âÎöʽ£»
£¨2£©¶¯µãP´ÓµãB³ö·¢£¬ÑØÏß¶ÎBD·½ÏòÒÔ
5
¸öµ¥Î»/ÃëµÄËÙ¶ÈÏòÖÕµãDÔ˶¯£¬¹ýµãP×÷PN¡ÍOA£¬ÉèµãPÔ˶¯µÄʱ¼äΪt£¬Ïß¶ÎMNµÄ³¤¶ÈΪy£¬ÇóyÓëtÖ®¼äµÄº¯Êý¹ØÏµÊ½£¨Ö±½Óд³ö×Ô±äÁ¿tµÄȡֵ·¶Î§£©£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬µ±µãPÔÚBMÉÏÔ˶¯Ê±£¬ÊÇ·ñ´æÔÚ¡ÏAPOÓë¡ÏAMBÏàµÈ£¿Èô´æÔÚ£¬Çó³ötµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºÒ»´Îº¯Êý×ÛºÏÌâ
רÌ⣺
·ÖÎö£º£¨1£©¸ù¾Ý¹´¹É¶¨Àí£¬¿ÉµÃABµÄ³¤£¬¸ù¾ÝÁâÐεÄÐÔÖÊ£¬¿ÉµÃADµÄ³¤£¬¿ÉµÃDµã×ø±ê£¬¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃ´ð°¸£»
£¨2£©·ÖÀàÌÖÂÛ£º0£¼0£¼
3
2
£¬
3
2
¡Üt¡Ü
5
2
£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖÊ£¬¿ÉµÃº¯Êý½âÎöʽ£»
£¨3£©¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖÊ£¬¿ÉµÃ
AP
AO
=
AM
AP
£¬¸ù¾Ý±ÈÀýµÄÐÔÖÊ£¬¿ÉµÃÒ»Ôª¶þ´Î·½³Ì£¬¸ù¾Ý½âÒ»Ôª¶þ´Î·½³Ì£¬¿ÉµÃPµã×ø±ê£¬¸ù¾ÝÁ½µã¼ä¾àÀ빫ʽ£¬¿ÉµÃBPµÄ³¤£¬¸ù¾Ý·³ÌÓëËٶȵĹØÏµ£¬¿ÉµÃ´ð°¸£®
½â´ð£º½â£º£¨1£©Óɹ´¹É¶¨Àí£¬µÃ
AB=
AO2+BO2
=
42+(-3)2
=5£®
ÓÉÁâÐεÄÐÔÖÊ£¬µÃ
AD=AB=5£¬D £¨5£¬4£©£®
ÉèBDµÄ½âÎöʽÊÇy=kx+b£¬º¯ÊýͼÏó¾­¹ýB¡¢Dµã£¬µÃ
-3k+b=0
5k+5=4
£¬
½âµÃ
k=
1
2
b=
3
2
£®
¹ÊÖ±ÏßBDµÄ½âÎöʽÊÇy=
1
2
x+
3
2
£»
£¨2£©Èçͼ1£º
£¬
µ±x=0ʱ£¬y=
3
2
£¬P£¨0£¬
3
2
£©£¬
BP=
5
t£¬BM=
BO2+OM2
=
3
5
2
£¬
PM=BM-BP=
3
5
-2
5
t
2
£®
¡÷MPN¡×¡÷MBO£¬
PM
BM
=
MN
MO
£¬
¼´
3
5
-2
5
t
2
3
5
2
=
y
3
2
£¬
»¯¼ò£¬µÃy=-t+
3
2
  £¨0£¼t£¼
3
2
£©£»
Èçͼ2£º
£¬
PM=
5
t-
3
5
2
£¬AM=4-
3
2
=
5
2
£¬MD=
AM2+AD2
=
5
5
2
£®
¡÷MPN¡×¡÷MAD£¬
PM
MD
=
MN
AM
£¬
¼´
5
t-
3
5
2
5
5
2
=
y
5
2
£¬
»¯¼ò£¬µÃ
y=t-
3
2
  £¨
3
2
£¼t£¼
5
2
£©£¬
×ÛÉÏËùÊö£ºy=
-t+
3
2
(0£¼t£¼
3
2
)
t-
3
2
(
3
2
£¼t£¼
5
2
)


£¨3£©´æÔÚ¡ÏAPOÓë¡ÏAMBÏàµÈ£®
Èçͼ3£º
£¬
ÓÉ£¨2£©ÖªAM=
5
2
£¬
¡ÏAPO=¡ÏAMB£¬¡ÏPAO=¡ÏMAP£¬
¡÷APO¡×¡÷AMP£¬
AP
AM
=
AO
AP
£¬
AP2=AM•AO£¬
ÉèPµã×ø±êÊÇ£¨a£¬
1
2
a+
3
2
£©£¬
AP2=a2+£¨
1
2
a+
3
2
-4£©2=
5
2
¡Á4£¬
½âµÃa1=3£¨²»·ûºÏÌâÒâµÄÒªÉáÈ¥£©£¬a2=-1£¬
P£¨-1£¬1£©£¬
BP=
(-1+3)2+12
=
5
£®
t=
5
5
=1£¨Ã룩£¬
¹Ê´æÔÚ¡ÏAPO=¡ÏAMBʱ£¬t=1Ã룮
µãÆÀ£º±¾Ì⿼²éÁËÒ»´Îº¯Êý×ÛºÏÌ⣬£¨1£©ÀûÓÃÁËÁâÐεÄÐÔÖÊ£¬´ý¶¨ÏµÊý·¨Çó½âÎöʽ£»£¨2£©ÀûÓÃÁËÏàËÆÈý½ÇÐεÄÐÔÖÊ£»£¨3£©ÀûÓÃÁËÏàËÆÈý½ÇÐεÄÐÔÖÊ£¬Â·³ÌÓëËٶȵĹØÏµ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

°ëÔ²ÊÇ»¡£¬»¡ÊǰëÔ²£®
 
£®£¨ÅÐ¶Ï¶Ô´í£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Êýѧ¿ÎÉÏ£¬ÀÏʦ½²Á˵¥ÏîʽÓë¶àÏîʽÏà³Ë£¬·Åѧºó£¬Ð¡Àö»Øµ½¼ÒÄóö¿ÎÌñʼǣ¬ÈÏÕæµØ¸´Ï°ÀÏʦ¿ÎÉϽ²µÄÄÚÈÝ£¬ËýͻȻ·¢ÏÖÒ»µÀÌ⣺-3x2£¨2x-[]+1£©=-6x3+3x2y-3x2£¬ÄÇô¿Õ¸ñÖеÄÒ»ÏîÊÇ£¨¡¡¡¡£©
A¡¢-yB¡¢yC¡¢-xyD¡¢xy

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ïß¶ÎAB¡¢CDÏཻÓÚµãO£¬AEƽ·Ö¡ÏBCD£¬CEƽ·Ö¡ÏBCD£¬µ±¡ÏB=¦Á£¬½Ç¡ÏD=¦Âʱ£¬¡ÏEµÄ¶ÈÊýΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èç¹ûÒ»¸öʵÊýµÄ¾ø¶ÔÖµÊÇ
5
-
3
£¬ÄÇôÕâ¸öʵÊýÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

·Ö½âÒòʽ£º4m3n2-4m2n+m£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¡÷ABCÖУ¬AB=AC£¬DE¡ÍACÓÚµãE£¬DEÓë°ë¡ÑOÏàÇÐÓÚµãD£®
ÇóÖ¤£º¡÷ABCÊǵȱßÈý½ÇÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ij¹«Â·ÓÐÒ»¸öÅ×ÎïÏßÐÎ×´µÄËíµÀABC£¬Æäºá½ØÃæÈçͼËùʾ£¬ÔÚͼÖн¨Á¢µÄÖ±½Ç×ø±êϵÖУ¬Å×ÎïÏߵĽâÎöʽΪy=-
1
10
x2+cÇÒ¹ý¶¥µãC£¨0£¬5£©£¨³¤¶Èµ¥Î»£ºm£©
£¨1£©Ö±½Óд³öc=
 
£»
£¨2£©¸ÃËíµÀΪ˫³µµÀ£¬ÏÖÓÐÒ»Á¾ÔË»õ¿¨³µ¸ß4Ãס¢¿í3Ã×£¬ÎÊÕâÁ¾¿¨³µÄÜ·ñ˳Àûͨ¹ýËíµÀ£¿Çë˵Ã÷ÀíÓÉ£»
£¨3£©ÎªÁ˳µÁ¾°²È«¿ìËÙͨ¹ýËíµÀ¶Ô¸ÃËíµÀ¼Ó¹ÌάÐÞ£¬Î¬ÐÞʱÐè´î½¨µÄ¡°½ÅÊּܡ±Îª¾ØÐÎEFGH£®Ê¹H¡¢GµãÔÚÅ×ÎïÏßÉÏ£¬E¡¢FµãÔÚµØÃæABÉÏ£®Ê©¹¤¶Ó×î¶àÐèÒª³ï±¸¶àÉÙ²ÄÁÏ£¬£¨¼´Çó³ö¡°½ÅÊּܡ±Èý¸ùľ¸ËHE¡¢HG¡¢GFµÄ³¤¶ÈÖ®ºÍµÄ×î´óÖµ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬¶þ´Îº¯Êýy=
1
2
x2+bx-
3
2
µÄͼÏóÓëxÖá½»ÓÚµãA£¨-3£¬0£©ºÍµãB£¬ÒÔABΪ±ßÔÚxÖáÉÏ·½×÷Õý·½ÐÎABCD£¬µãPÊÇxÖáÉÏÒ»¶¯µã£¬Á¬½ÓDP£¬¹ýµãP×÷DPµÄ´¹ÏßÓëyÖá½»ÓÚµãE£®
£¨1£©Çó³ö¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÇëÖ±½Óд³öµãDµÄ×ø±ê£»
£¨3£©µ±µãPÔÚÏß¶ÎAO£¨µãP²»ÓëA£¬OÖØºÏ£©ÉÏÔ˶¯ÖÁºÎ´¦Ê±£¬Ïß¶ÎOEµÄ³¤ÓÐ×î´óÖµ£¬Çó³öÕâ¸ö×î´óÖµ£»
£¨4£©ÔÚxÖáÉÏÊÇ·ñ´æÔÚÕâÑùµÄµãP£¬Ê¹¡÷PEDÊǵÈÑüÈý½ÇÐΣ¿Èô´æÔÚ£¬ÇëÖ±½Óд³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çó˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸