【题目】如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.
(1)求证:△AEF≌△DEB;
(2)求证:四边形ADCF是菱形.
科目:初中数学 来源: 题型:
【题目】如图1,抛物线C1:y=ax2+bx+1的顶点坐标为D(1,0)且经过点(0,1),将抛物线C1向右平移1个单位,向下平移1个单位得到抛物线C2,直线y=x+c,经过点D交y轴于点A,交抛物线C2于点B,抛物线C2的顶点为P.
(1)求抛物线C1的解析式;
(2)如图2,连结AP,过点B作BC⊥AP交AP的延长线于C,设点Q为抛物线上点P至点B之间的一动点,连结BQ并延长交AC于点F,
①当点Q运动到什么位置时,S△PBD×S△BCF=8?
②连接PQ并延长交BC于点E,试证明:FC(AC+EC)为定值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(1,0)、B(3,2)、C(0,1)(正方形网格中每个小正方形的边长是一个单位长度).
(1)沿x轴向左平移2个单位,得到△A1B1C1,不画图直接写出发生变化后的点的坐标。点的坐标是 ;
(2)以A点为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,则点的坐标是 ;
(3) △A2B2C2的面积是 平方单位.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某钢铁厂今年1月份钢产量为5000吨,3月份上升到7200吨,设平均每月增长的百分率为,根据题意得方程( )
A. 5000(1+x)+5000(1+x)2=7200 B. 5000(1+x2)=7200
C. 5000(1+x)2=7200 D. 5000+5000(1+x)2=7200
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形中,对角线、相交于,,、、分别是、、的中点,下列结论:
①;②;③;④平分;⑤四边形是菱形.
其中正确的是( )
A.①②③B.①③④C.①②⑤D.②③⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在 Rt△POQ中,OP=OQ=4,M 是 PQ中点,把一个三角尺顶点放在点M处,以M为旋转心,旋转三角尺,三角尺的两直角边与 Rt△POQ的两直角边分别交于点A、B.
(1)求证:MA=MB;
(2)探究:在旋转三角尺的过程中,四边形AOBM的面积是否发生变化?为什么?
(3)连接 AB,探究:在旋转三角尺的过程中,△AOB的周长是否存在最小值?若存在,求出最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AD⊥BC于D,下列条件:①∠B+∠DAC=90°;②∠B=∠DAC;③=;④AB2=BDBC.其中一定能够判定△ABC是直角三角形的有( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图:直线AB:y=﹣3x+3与两坐标轴交于A,B两点.
(1)过点O作OC⊥AB于点C,求OC的长;
(2)将△AOB沿AB翻折到△ABD,点O与点D对应,求直线BD的解析式;
(3)在(2)的条件下,正比例函数y=kx与直线BD交于P,直线AB交于Q,若OP=3OQ,求正比例函数的解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com