【题目】已知,如图:直线AB:y=﹣3x+3与两坐标轴交于A,B两点.
(1)过点O作OC⊥AB于点C,求OC的长;
(2)将△AOB沿AB翻折到△ABD,点O与点D对应,求直线BD的解析式;
(3)在(2)的条件下,正比例函数y=kx与直线BD交于P,直线AB交于Q,若OP=3OQ,求正比例函数的解析式.
【答案】(1);(2)y=3x﹣3;(3)
【解析】
(1)首先求出A、B两点的坐标得出OA=3,OB=1,据此利用勾股定理求出AB的长,最后通过三角形等面积法进一步求解即可;
(2)连接OD,过点D作DH⊥x轴于H,根据题意证明△AOB~△OHD,然后利用相似三角形性质求出D点坐标,最后利用待定系数法求解析式即可;
(3)过点P作PM⊥x轴于M,点Q作QN⊥x轴于N,根据题意求得OM=,ON=,结合OP=3OQ进一步分析求出k=,据此即可得出相应的解析式.
(1)∵直线AB解析式为y=﹣3x+3,
∴A(0,3),B(1,0),
∴OA=3,OB=1,
∴AB=,
∵△AOB的面积=OA×OB=AB×OC,
∴OC=;
(2)连接OD,过点D作DH⊥x轴于H,
∵点O与点D关于AB对称,
∴AB垂直平分OD,由(1)OC=,
∴OD=2OC=,
易得:△AOB~△OCB,△OCB~△OHD,
∴△AOB~△OHD,
∴,
∴DH=,OH=,
∴D(,).
设直线BD解析式为y=kx+b,
∵B(1,0),D(,),
∴,且,
解得:,,
∴直线BD解析式为y=3x﹣3.
(3)如图,过点P作PM⊥x轴于M,点Q作QN⊥x轴于N.
∵正比例函数y=kx与直线BD交于P,
∴kx=3x﹣3,解得x=,
∴OM=,
∵正比例函数y=kx与直线AB交于Q,
∴kx=﹣3x+3,解得x=
∴ON=,
∵OP=3OQ,
∴ON=3OM,
∴=3×,解得k=,
∴正比例函数的解析式为.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.
(1)求证:△AEF≌△DEB;
(2)求证:四边形ADCF是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】近日,我校八年级同学进行了体育测试.为了解大家的身体素质情况,一个课外活动小组随机调查了部分同学的测试成绩,并将结果分为“优”、“良”、“中”、“差”四个等级,分别记作、、、;根据调查结果绘制成如图所示的扇形统计图和条形统计图(未完善),请结合图中所给信息解答下列问题:
(1)本次调查的学生总数为 人;
(2)在扇形统计图中,所对应扇形的圆心角 度,并将条形统计图补充完整;
(3)在“优”和“良”两个等级的同学中各有两人愿意接受进一步训练,现打算从中随机选出两位进行训练,请用列表法或画树状图的方法,求出所选的两位同学测试成绩恰好都为“良”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系图象如图所示,根据图中提供的信息,有下列说法:
(1)他们都行驶了18千米;
(2)甲在途中停留了0.5小时;
(3)乙比甲晚出发了0.5小时;
(4)相遇后,甲的速度小于乙的速度;
(5)甲、乙两人同时到达目的地
其中符合图象描述的说法有( )
A. 2个B. 3个C. 4个D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线y=2x+4与两坐标轴分别交于A,B两点.
(1)若一次函数y=﹣x+m与直线AB的交点在第二象限,求m的取值范围;
(2)若M是y轴上一点,N是x轴上一点,直线AB上是否存在两点P,Q,使得以M,N,P,Q四点为顶点的四边形是正方形.若存在,求出M,N两点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】近日,深圳市人民政府发布了《深圳市可持续发展规划》,提出了要做可持续发展的全球创新城市的目标,某初中学校了解学生的创新意识,组织了全校学生参加创新能力大赛,从中抽取了部分学生成绩,分为5组:A组50~60;B组60~70;C组70~80;D组80~90;E组90~100,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图.
(1)抽取学生的总人数是 人,扇形C的圆心角是 °;
(2)补全频数直方图;
(3)该校共有2200名学生,若成绩在70分以下(不含70分)的学生创新意识不强,有待进一步培养,则该校创新意识不强的学生约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形中,延长至使,连接交于点,点是线段的中点.
(1)如图1,若,,求平行四边形的面积;
(2)如图2,过点作交于点,于点,连接,若,求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com