精英家教网 > 初中数学 > 题目详情

【题目】如图,平行四边形中,延长使,连接于点,点是线段的中点.

(1)如图1,若,求平行四边形的面积;

(2)如图2,过点于点于点,连接,若,求证:

【答案】1 2)见解析

【解析】

1)首先证明CEAF,想办法求出CDAE即可解决问题. 2)证明:如图2中,连接BE,作EKACK.利用全等三角形的性质证明AG=EK=KG,即可解决问题.

1)解:如图1中,

CA=CFAE=EF CEAF CE=1,∠F=30°

CF=CA=2CE=2AE=EF=

∵四边形ABCD 平行四边形, ADCF ∴∠D=ECF

∵∠AED=CEFAE=EF ∴△ADE≌△FCEAAS),

CE=DE=1 CD=2

∴平行四边形ABCD的面积=CDAE=

2)证明:如图2中,连接BE,作EKACK

CEAFCEAB ABAE

BGAC ∴∠BAH=AEC=AGB=90°

∴∠ABG+BAG=90°,∠BAG+CAE=90°

∴∠ABH=CAE BH=AC ∴△BAH≌△AECAAS),

BA=AE=CDAH=CE=DE AB=2AH

∵∠ABG=EAKAB=AE,∠AGB=AKE

∴△BGA≌△AKEAAS), AG=EK

tanABH===

tanEAK== AK=2EK AG=GK KG=KE

∵∠EKG=90° EG==

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,如图:直线ABy=﹣3x+3与两坐标轴交于AB两点.

1)过点OOCAB于点C,求OC的长;

2)将△AOB沿AB翻折到△ABD,点O与点D对应,求直线BD的解析式;

3)在(2)的条件下,正比例函数ykx与直线BD交于P,直线AB交于Q,若OP3OQ,求正比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知RtABC中,∠ACB=90°,B=30°,DAB的中点,AECD,ACED,

求证:四边形ACDE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:一个自然数,右边的数字总比左边的数字小,我们称它为下滑数(如:32,641,8531等).现从两位数中任取一个,恰好是下滑数的概率为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图1,正方形ABCD的边长为5,点E、F分别在边AB、AD的延长线上,且BE=DF,连接EF.

(1)证明:EFAC;

(2)将AEF绕点A顺时针方向旋转,当旋转角α满足0°<α<45°时,设EF与射线AB交于点G,与AC交于点H,如图所示,试判断线段FH、HG、GE的数量关系,并说明理由.

(3)若将AEF绕点A旋转一周,连接DF、BE,并延长EB交直线DF于点P,连接PC,试说明点P的运动路径并求线段PC的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在方格纸中,点A,B,P都在格点上.请按要求画出以AB为边的格点四边形,使P在四边形内部不包括边界上,且P到四边形的两个顶点的距离相等.

1在图甲中画出一个ABCD.

2在图乙中画出一个四边形ABCD,使D=90°,且A90°注:图甲、乙在答题纸上

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明与小亮玩游戏,如图,两组相同的卡片,每组三张,第一组卡片正面分别标有数字1,3,5;第二组卡片正面分别标有数字2,4,6.他们将卡片背面朝上,分组充分洗匀后,从每组卡片中各摸出一张,称为一次游戏.当摸出的两张卡片的正面数字之积小于10,则小明获胜;当摸出的两张卡片的正面数字之积超过10,则小亮获胜.你认为这个游戏规则对双方公平吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的对角线ACBD交于点O,分别过点C. DCE∥BD,DE∥AC,CEDE交于点E.

(1)求证:四边形ODEC是矩形;

(2)当∠ADB=60°,AD=2时,求EA的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABCD, A的平分线分BC43的两条线段, ABCD的周长为_____.

查看答案和解析>>

同步练习册答案