精英家教网 > 初中数学 > 题目详情

【题目】已知,如图1,正方形ABCD的边长为5,点E、F分别在边AB、AD的延长线上,且BE=DF,连接EF.

(1)证明:EFAC;

(2)将AEF绕点A顺时针方向旋转,当旋转角α满足0°<α<45°时,设EF与射线AB交于点G,与AC交于点H,如图所示,试判断线段FH、HG、GE的数量关系,并说明理由.

(3)若将AEF绕点A旋转一周,连接DF、BE,并延长EB交直线DF于点P,连接PC,试说明点P的运动路径并求线段PC的取值范围.

【答案】(1)证明见解析;(2)FH2+GE2=HG2,理由见解析;(3)0≤PC≤5

【解析】

(1)先证明AE=AF,根据等腰三角形三线合一的性质可得结论;

(2)如图2,作辅助线,构建全等三角形,先证明AGH≌△AGK,得GH=GK,由AFH≌△AEK,得∠AEK=AFH=45°,FH=EK,利用勾股定理得:KG2=EG2+EK2,根据相等关系线段等量代换可得结论:FH2+GE2=HG2

(3)如图3,先证明∠FPE=FAE=90°,根据90°的圆周角所对的弦是直径可得:点P的运动路径是:以BD为直径的圆,如图4,可得PC的取值范围.

(1)证明:如图1,

∵四边形ABCD是正方形,

AD=AB,DAC=BAC,

BE=DF,

AD+DF=AB+BE,即AF=AE,

ACEF;

(2)解:FH2+GE2=HG2,理由是:

如图2,过AAKAC,截取AK=AH,连接GK、EK,

∵∠CAB=45°,

∴∠CAB=KAB=45°,

AG=AG,

∴△AGH≌△AGK,

GH=GK,

由旋转得:∠FAE=90°,AF=AE,

∵∠HAE=90°,

∴∠FAH=KAE,

∴△AFH≌△AEK,

∴∠AEK=AFH=45°,FH=EK,

∵∠AEH=45°,

∴∠KEG=45°+45°=90°,

RtGKE中,KG2=EG2+EK2

即:FH2+GE2=HG2

(3)解:如图3,

AD=AB,DAF=BAE,AE=AF,

∴△DAF≌△BAE,

∴∠DFA=BEA,

∵∠PNF=ANE,

∴∠FPE=FAE=90°,

∴将AEF绕点A旋转一周,总存在直线EB与直线DF垂直,

∴点P的运动路径是:以BD为直径的圆,如图4,

PC重合时,PC最小,PC=0,

PA重合时,PC最大为5

∴线段PC的取值范围是:0≤PC≤5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,直线y2x+4与两坐标轴分别交于AB两点.

1)若一次函数y=﹣x+m与直线AB的交点在第二象限,求m的取值范围;

2)若My轴上一点,Nx轴上一点,直线AB上是否存在两点PQ,使得以MNPQ四点为顶点的四边形是正方形.若存在,求出MN两点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】益民商店经销某种商品,进价为每件80元,商店销售该商品每件售价高干8元且不超过120元若售价定为每件120元时,每天可销售200件,市场调查反映:该商品售价在120元的基础上,每降价1元,每天可多销售10件,设该商品的售价为元,每天销售该商品的数量为件.

(1)之间的函数关系式;

(2)商店在销售该商品时,除成本外每天还需支付其余各种费用1000元,益民商店在某一天销售该商品时共获利8000元,求这一天该商品的售价为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图分别是两根木棒及其影子的情形.

(1)哪个图反映了太阳光下的情形?哪个图反映了路灯下的情形?

(2)在太阳光下,已知小明的身高是1.8米,影长是1.2米,旗杆的影长是4米,求旗杆的高;

(3)请在图中分别画出表示第三根木棒的影长的线段.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y上运动,则k的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形中,延长使,连接于点,点是线段的中点.

(1)如图1,若,求平行四边形的面积;

(2)如图2,过点于点于点,连接,若,求证:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题背景

如图1,在正方形ABCD的内部,作DAE=ABF=BCG=CDH,根据三角形全等的条件,易得DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形。

类比研究

如图2,在正ABC的内部,作BAD=CBE=ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)。

(1)ABD,BCE,CAF是否全等?如果是,请选择其中一对进行证明;

(2)DEF是否为正三角形?请说明理由;

(3)进一步探究发现,ABD的三边存在一定的等量关系,设,请探索满足的等量关系。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】近日,中国工程院院士、“杂交水稻之父”袁隆平团队选育培植的耐盐碱水稻(即海水稻)在山东青岛等六个试验基地开始春播育秧,预计今年的种植规模将超一万亩.已知去年某基地甲、乙两块实验田海水稻的总产量都是3600千克,乙实验田海水稻种植面积是甲实验田的,而乙实验田海水稻平均亩产量比甲多60千克.

1)求甲、乙两块实验田种植海水稻的面积;

2)经过科学家的努力,海水稻正从试验田走向餐桌,某电商新购进AB两种包装的海水稻产品共50袋,其进价、标价及优惠方案如下表所示.若要保证这批海水稻产品全部售出后所得利润不少于1000元,该电商至少要购进A种包装的海水稻产品多少袋?

包装类型

A

B

进价(/)

100

30

标价(/)

150

50

优惠方案

全部九折

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC,点ABC边的上方,把ABC绕点B逆时针方向旋转60°DBE,绕点C顺时针方向旋转60°FEC,连接ADAF.

(1)△ABD,△ACF,△BCE是什么特殊三角形?请说明理由;

(2)ABC满足什么条件时,四边形ADEF是正方形?请说明理由;

(3)ABC满足什么条件时,以点ADEF为顶点的四边形不存在?请说明理由.

查看答案和解析>>

同步练习册答案