精英家教网 > 初中数学 > 题目详情

【题目】如图,在平行四边形中,对角线相交于分别是的中点,下列结论:

平分;⑤四边形是菱形.

其中正确的是(  )

A.①②③B.①③④C.①②D.②③

【答案】B

【解析】

由平行四边形的性质可得OBBC,由等腰三角形的性质可判断①正确,由直角三角形的性质和三角形中位线定理可判断②错误,通过证四边形BGFE是平行四边形,可判断③正确,由平行线的性质和等腰三角形的性质可判断④正确,由∠BAC≠30°可判断⑤错误.

解:∵四边形ABCD是平行四边形
BODOBDADBCABCDABBC
又∵BD2AD
OBBCODDA,且点EOC中点,
BEAC,故①正确,
EF分别是OCOD的中点,
EFCDEFCD
∵点GRtABE斜边AB上的中点,
GEABAGBG
EGEFAGBG,无法证明GEGF,故②错误,
BGEFABCDEF
∴四边形BGFE是平行四边形,
GFBE,且BGEFGEGE
∴△BGE≌△FEGSSS)故③正确
EFCDAB
∴∠BAC=∠ACD=∠AEF
AGGE
∴∠GAE=∠AEG
∴∠AEG=∠AEF
AE平分∠GEF,故④正确,
若四边形BEFG是菱形
BEBGAB
∴∠BAC30°
与题意不符合,故⑤错误
故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图某水平地面上建筑物的高度为AB在点D和点F处分别竖立高是2米的标杆CDEF两标杆相隔52并且建筑物AB标杆CDEF在同一竖直平面内从标杆CD后退2米到点GG处测得建筑物顶端A和标杆顶端C在同一条直线上从标杆FE后退4米到点HH处测得建筑物顶端A和标杆顶端E在同一条直线上求建筑物的高

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+3x+c经过A(﹣1,0),B(4,0)两点,与y轴交于点C.

(1)求抛物线的解析式;

(2)若点P在第一象限的抛物线上,且点P的横坐标为t,过点P向x轴作垂线交直线BC于点Q,设线段PQ的长为m,求m与t之间的函数关系式,并求出m的最大值;

(3)在x轴上是否存在点E,使以点B,C,E为顶点的三角形为等腰三角形?如果存在,直接写出E点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】第二届全国青年运动会将于20198月在太原开幕,这是山西历史上第一次举办全国大型综合性运动会,必将推动我市全民健康理念的提高.某体育用品商店近期购进甲、乙两种运动衫各50件,甲种用了2000元,乙种用了2400元.商店将甲种运动衫的销售单价定为60元,乙种运动衫的销售单价定为88元.该店销售一段时间后发现,甲种运动衫的销售不理想,于是将余下的运动衫按照七折销售;而乙种运动衫的销售价格不变.商店售完这两种运动衫至少可获利2460元,求甲种运动衫按原价销售件数的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,AD是△ABC的角平分线,DEDF分别是△ABD和△ACD的高。求证:AD垂直平分EF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠BAC90°DBC的中点,EAD的中点,过点AAFBCBE的延长线于点F.

1)求证:△AEF≌△DEB;

2)求证:四边形ADCF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一张长20cm、宽12cm的矩形纸板,将纸板四个角各剪去一个边长为cm的正方形,然后将四周突出部分折起,可制成一个无盖纸盒.

1)这个无盖纸盒的长为   cm,宽为   cm;(用含x的式子表示)

2)若要制成一个底面积是180m2的无盖长方体纸盒,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)问题发现

如图1,△ACB和△DCE均为等边三角形,点ADE在同一直线上,连接BE.填空:

AEB的度数为______

线段ADBE之间的数量关系为______

(2)拓展探究

如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE90°,点ADE在同一直线上,CM为△DCEDE边上的高,连接BE,请判断∠AEB的度数及线段CMAEBE之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,直线y2x+4与两坐标轴分别交于AB两点.

1)若一次函数y=﹣x+m与直线AB的交点在第二象限,求m的取值范围;

2)若My轴上一点,Nx轴上一点,直线AB上是否存在两点PQ,使得以MNPQ四点为顶点的四边形是正方形.若存在,求出MN两点的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案