精英家教网 > 初中数学 > 题目详情

【题目】A(﹣3.5y1),B(﹣1y2)为二次函数y=﹣(x+22+h的图象上的两点,则y1_____y2(填).

【答案】

【解析】

本题需先根据已知条件求出二次函数的图象的对称轴,再根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.

∵二次函数y=﹣(x+22+h

∴该抛物线开口向下,且对称轴为x=﹣2

A(﹣3.5y1),B(﹣1y2)在二次函数y=﹣(x+22+h的图象上,

点(﹣3.5y1)横坐标离对称轴的距离大于点(﹣1y2)横坐标离对称轴的距离,

y1y2

故答案为:<.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:

(1)这次活动一共调查了多少名学生?

(2)补全条形统计图;

(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于多少度?

(4)若该学校有1500人,请你估计该学校选择足球项目的学生人数;

(5)九(1)班从参加乒乓球活动的学生中挑选四名优秀学生张杰、吴元、金贤、郝涛,随机选取两人为一组,另两人为一组,进行男子双打对抗训练,准备参加县乒乓球比赛.用树状图或列表法求吴元与金贤恰好分在同一组的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题中,是真命题的为( )

A.锐角三角形都相似B.直角三角形都相似

C.等腰三角形都相似D.等边三角形都相似

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,书桌上的一种新型台历和一块主板AB、一个架板AC和环扣(不计宽度,记为点A)组成,其侧面示意图为△ABC,测得AC⊥BC,AB=5cm,AC=4cm,现为了书写记事方便,须调整台历的摆放,移动点C至C′,当∠C′=30°时,求移动的距离即CC′的长(或用计算器计算,结果取整数,其中 =1.732, =4.583)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题
(1)计算:
(2)(﹣a23﹣(﹣a32+2a5(﹣a)
(3)(2a+b)(2a-b)+3(2a-b) 2+(-3a)(4a-3b)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,⊙My轴相切于原点O,平行于x轴的直线交⊙MP、Q两点,点P在点Q的右边,若P点的坐标为(-1,2),则Q点的坐标是

A. (-4,2) B. (-4.5,2) C. (-5,2) D. (-5.5,2 )

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若 互为相反数, 互为倒数, 的绝对值为2.
(1)分别直接写出 的值;
(2)求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图16,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(2,0),抛物线的对称轴x=-1与抛物线交于点D,与直线BC交于点E.

(1)求抛物线的解析式;

(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形BOCF的面积最大,若存在,求出点F的坐标;若不存在,请说明理由;

(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.

查看答案和解析>>

同步练习册答案