【题目】如图,在Rt△ABC中,∠ACB=90°,AC=2cm,AB=4cm,动点P从点C出发,在BC边上以每秒cm的速度向点B匀速运动,同时动点Q也从点C出发,沿C→A→B以每秒4cm的速度匀速运动,运动时间为t秒,连接PQ,以PQ为直径作⊙O.
(1)当时,求△PCQ的面积;
(2)设⊙O的面积为s,求s与t的函数关系式;
(3)当点Q在AB上运动时,⊙O与Rt△ABC的一边相切,求t的值.
【答案】(1);(2)①;②;(3)t的值为或1或.
【解析】
(1)先根据t的值计算CQ和CP的长,由图形可知△PCQ是直角三角形,根据三角形面积公式可得结论;
(2)分两种情况:①当Q在边AC上运动时,②当Q在边AB上运动时;分别根据勾股定理计算PQ2,最后利用圆的面积公式可得S与t的关系式;
(3)分别当⊙O与BC相切时、当⊙O与AB相切时,当⊙O与AC相切时三种情况分类讨论即可确定答案.
(1)当t=时,CQ=4t=4×=2,即此时Q与A重合,
CP=t=,
∵∠ACB=90°,
∴S△PCQ=CQPC=×2×=;
(2)分两种情况:
①当Q在边AC上运动时,0<t≤2,如图1,
由题意得:CQ=4t,CP=t,
由勾股定理得:PQ2=CQ2+PC2=(4t)2+(t)2=19t2,
∴S=π=;
②当Q在边AB上运动时,2<t<4如图2,
设⊙O与AB的另一个交点为D,连接PD,
∵CP=t,AC+AQ=4t,
∴PB=BC﹣PC=2﹣t,BQ=2+4﹣4t=6﹣4t,
∵PQ为⊙O的直径,
∴∠PDQ=90°,
Rt△ACB中,AC=2cm,AB=4cm,
∴∠B=30°,
Rt△PDB中,PD=PB=,
∴BD=,
∴QD=BQ﹣BD=6﹣4t﹣=3﹣,
∴PQ==,
∴S=π==;
(3)分三种情况:
①当⊙O与AC相切时,如图3,设切点为E,连接OE,过Q作QF⊥AC于F,
∴OE⊥AC,
∵AQ=4t﹣2,
Rt△AFQ中,∠AQF=30°,
∴AF=2t﹣1,
∴FQ=(2t﹣1),
∵FQ∥OE∥PC,OQ=OP,
∴EF=CE,
∴FQ+PC=2OE=PQ,
∴(2t﹣1)+t=,
解得:t=或﹣(舍);
②当⊙O与BC相切时,如图4,
此时PQ⊥BC,
∵BQ=6﹣4t,PB=2﹣t,
∴cos30°=,
∴,
∴t=1;
③当⊙O与BA相切时,如图5,
此时PQ⊥BA,
∵BQ=6﹣4t,PB=2﹣t,
∴cos30°=,
∴,
∴t=,
综上所述,t的值为或1或.
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E是BC边上一点,连接AE,延长CB至点F,使,过点F作于点H,射线FH分别交AB、CD于点M、N,交对角线AC于点P,连接AF.
依题意补全图形;
求证:;
判断线段FM与PN的数量关系,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,斜坡AF的坡度为5:12,斜坡AF上一棵与水平面垂直的大树BD在阳光照射下,在斜坡上的影长BC=6.5米,此时光线与水平线恰好成30°角,求大树BD的高.(结果精确的0.1米,参考数据≈1.414,≈1.732)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知平行四边形ABCD中,G为BC中点,点E在AD边上,且∠1=∠2.
(1)求证:E是AD中点;
(2)若F为CD延长线上一点,连接BF,且满足∠3=∠2,求证:CD=BF+DF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】垫球是排球队常规训练的重要项目之一,下列图表中的数据是运动员甲、乙、丙三人每人10次垫球测试的成绩,测试规则为每次连续接球10个,每垫球到位1个记1分,已知运动员甲测试成绩的中位数和众数都是7.
运动员甲测试成绩统计表
测试序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成绩(分) | 7 | 6 | 8 | 7 | 6 | 8 | 6 | 8 |
(1)填空:______;______.
(2)要从他们三人中选择一位垫球较为稳定的接球能手,你认为选谁更合适?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】鼎丰超市以固定进价一次性购进保温杯若干个,11月份按一定售价销售,销售额为1800元,为扩大销量,减少库存,12月份在11月份售价基础上打9折销售,结果销售量增加50个,销售额增加630元.
(1)求鼎丰超市11月份这种保温杯的售价是多少元?
(2)如果鼎丰超市11月份销售这种保温杯的利润为600元,那么该鼎丰超市12月份销售这种保温杯的利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图的正方形网格中,每一个小正方形的边长为1.格点三角形(顶点是网格线交点的三角形)的顶点的坐标分别是.
(1)请在图中的网格平面内建立平面直角坐标系;
(2)请画出关于轴对称的;
(3)请在轴上求作一点,使的周长最小,并写出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线平行于轴并交轴于,一块三角板摆放其中,其边与轴分别交于,两点,与直线分别交于,两点,
(1)将三角板如图1所示的位置摆放,请写出与之间的数量关系,并说明理由.
(2)将三角板按如图2所示的位置摆放,为上一点,,请写出与之间的数量关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com