精英家教网 > 初中数学 > 题目详情
19.如图,以△ABC的边AB,AC为边向外作等边△ABE和△ACD,连接BD,CE,求证:BD=CE.

分析 根据等边三角形的性质得到AE=AB,AD=AC,∠EAB=∠DAC=60°,则∠BAD=∠EAC,再根据三角形全等的判定方法可证得△ACE≌△ADB,然后根据全等的性质即可得到结论.

解答 证明:∵△ABE和△ACD是等边三角形,
∴AE=AB,AD=AC,∠EAB=∠DAC=60°,
∴∠EAB+∠BAC=∠DAC+∠CAB,
∴∠BAD=∠EAC,
在△ACE和△ADB中,
$\left\{\begin{array}{l}{AE=AB}\\{∠EAC=∠DAB}\\{AC=AD}\end{array}\right.$,
∴△ACE≌△ADB(SAS),
∴BD=CE.

点评 本题考查了全等三角形的判定与性质:有两组边对应相等,且它们所夹的角也相等,那么这两个三角形全等;全等三角形的对应边相等.也考查了等边三角形的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.如图,在平面直角坐标系中,直角梯形ABCD的直角顶点D与原点重合,另一直角顶点A在y轴的正半轴上,点B、C的坐标分别为B(12,8)、C(14,0),AD为⊙E的直径.点M、N分别从A、C两点同时出发做匀速运动,其中点M沿AB向终点B运动,速度为每秒1个单位;点N沿CD向终点D运动,速度为每秒3个单位.当这两点中有一点到达自己的终点时,另一点也停止运动.
(1)设点M、N的运动时间为t秒,当t为何值时,四边形MBCN为平行四边形?
(2)在(1)的条件下,连结DM与⊙E相交于点P,求弦DP的长;
(3)在运动过程中,是否存在使直线MN与⊙E相切的情形?如果存在,请求出直线MN.如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.基本模型
如图1,点A,F,B在同一直线上,若∠A=∠B=∠EFC=90°,易得△AFE∽△BCF.
(1)模型拓展:
如图2,点A,F,B在同一直线上,若∠A=∠B=∠EFC,求证:△AFE∽△BCF;
(2)拓展应用:如图3,AB是半圆⊙O的直径,弦长AC=BC=4$\sqrt{2}$,E,F分别是AC,AB上的一点,若∠CFE=45°.若设AE=y,BF=x,求出y与x的函数关系式及y的最大值;
(3)拓展提升:如图4,在平面直角坐标系柳中,抛物线y=-$\frac{1}{3}$(x+4)(x-6)与x轴交于点A,C,与y轴交于点B,抛物线的对称轴交线段BC于点E,探求线段AB上是否存在点F,使得∠EFO=∠BAO?若存在,求出BF的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.当x=-1时,分式$\frac{{x}^{2}-2x-3}{x(x-3)}$的值为零.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知方程(m-2)xn-1+2y|m-1|=m是关于x、y的二元一次方程,求m、n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.通过配方,写出下列函数的开口方向,对称轴和顶点坐标.
(1)y=-3x2+8x-2
(2)y=-$\frac{1}{4}$x2+x-4.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.下列计算中,正确的是(  )
A.(x43=x12B.a2a5=a10C.(3a)2=6a2D.a6÷a2=a3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知线段OA,OB,OC,OD,OE,OF,∠AOB=∠BOC=∠COD=∠DOE=∠EOF=60°,且AD=BE=CF=2,求证:S△OAB+S△OCD+S△OEF<$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,已知P(a,b)在反比例函数y=$\frac{2}{x}$的图象上,直线y=kx+1-k与坐标轴交于A、B两点,∠ABO=45°,过点P分别作两坐标轴的垂线PM、PN,垂足分别为M、N.
(1)求k的值.
(2)当a=1.5时,求cos∠EOF.
(3)当1<a<2时,AE,EF,BF能否作为同一个三角形的三边长,如果能,由AE,EF,BF构成的三角形的外接圆的面积记为S1,S△OEF记为S2,S=S1+S2,求S的最小值;如果不能,说明理由.

查看答案和解析>>

同步练习册答案