精英家教网 > 初中数学 > 题目详情
5.已知$\sqrt{x}$+$\frac{1}{\sqrt{x}}$=2,那么$\sqrt{\frac{x}{{x}^{2}+2x+1}}$-$\sqrt{\frac{x}{{x}^{2}+7x+1}}$=$\frac{1}{6}$.

分析 先求出:x+$\frac{1}{x}$=2,再用整体代入的方法解决问题.

解答 解:∵$\sqrt{x}$+$\frac{1}{\sqrt{x}}$=2,
∴x+$\frac{1}{x}$+2=4,
∴x+$\frac{1}{x}$=2,
∴原式=$\sqrt{\frac{1}{x+2+\frac{1}{x}}}-\sqrt{\frac{1}{x+7+\frac{1}{x}}}$=$\frac{1}{2}-\frac{1}{3}$=$\frac{1}{6}$,
故答案为$\frac{1}{6}$.

点评 本题考查二次根式的化简,关键是灵活运用公式,学会整体代入的解题思想,有一定的技巧.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

15.若点Q(m,1-2m)的横坐标与纵坐标互为相反数,则点P一定在第四象限.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图所示,与∠B构成同位角的共有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.计算($\sqrt{5}$+1)2015-2($\sqrt{5}$+1)2014-4($\sqrt{5}$+1)2013+2016的结果是2016.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图所示,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,10为半径作⊙O,分别与∠EPF两边相交于A、B和C、D,连结OA,此时有OC∥PE
(1)求证:PC=OC;
(2)若弦CD=12,求tan∠OPD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.有一个直径为a+b的圆形公园,挖去直径分别为a与b的两个圆形荷花池,剩下的地方全部植草皮,问草皮的面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.深化理解:
新定义:对非负实数x“四舍五入”到个位的值记为<x>,
即:当n为非负整数时,如果n-$\frac{1}{2}$≤x<n+$\frac{1}{2}$,则<x>=n;
反之,当n为非负整数时,如果<x>=n,则n-$\frac{1}{2}$≤x<n+$\frac{1}{2}$.
例如:<0>=<0.48>=0,<0.64>=<1.49>=1,<2>=2,<3.5>=<4.12>=4,…
试解决下列问题:
填空:①<π>=3(π为圆周率);
②如果<x-1>=3,则实数x的取值范围为3.5≤x<4.5.
若关于x的不等式组$\left\{\begin{array}{l}{\frac{2x-4}{3}≤x-1}\\{<a>-x>0}\end{array}\right.$的整数解恰有3个,求a的取值范围.
①关于x的分式方程$\frac{1-<m>x}{x-2}$+2=$\frac{1}{2-x}$有正整数解,求m的取值范围;
②求满足<x>=$\frac{4}{3}$x 的所有非负实数x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,Rt△ABC中,∠C=90°,∠B=30°,BA=6,点E在AB边上,点D是BC边上一点(不与点B、C重合),且AE=ED,线段AE的最小值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.一位很有名望的木工师傅,招收了两名徒弟.一天,师傅有事外出,两徒弟就自己在家练习用两块四边形的废料各做了一扇矩形式的门,完事之后,两人都说对方的门不是矩形,而自己的是矩形.
甲的理由是:“我用直尺量这个门的两条对角线,发现它们的长度相等,所以我这个四边形门就是矩形.”
乙的理由是:“我用角尺量我的门任意三个角,发现它们都是直角.所以我这个四边形门就是矩形.”
根据他们的对话,你能肯定谁的门一定是矩形.

查看答案和解析>>

同步练习册答案