精英家教网 > 初中数学 > 题目详情

【题目】我们知道“两边和一角分别相等的两个三角形不一定全等”,如图(1),,但却不全等.但是如果两个直角三角形呢?如图(2),则吗?

(1)根据图(2)完成以下证明和阅读:

中,

____________(勾股定理)

____________

.____________

中,

____________(____________)

归纳:斜边和一条直角边相等的两个直角三角形全等;简称为“斜边直角边”或“”.

几何语言如下:

中,

(2)如图(3)已知;求证:平分.(每一步都要填写理由)

【答案】1)详见解析;(2)详见解析.

【解析】

1)根据勾股定理得到BC=EF,根据SSS证三角形全等;(2)根据HL证三角形全等,根据全等三角形性质得到∠ACB=ACD.

证明:(1中,

DE2(勾股定理)

DE2-DF2

.EF

中,

SSS

2)因为(已知)

所以ABCADC是直角三角形(直角三角形定义)

因为AC=AC,(已知)

所以ABCADCHL

所以∠ACB=ACD(全等三角形性质)

所以平分(角平分线定义)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB10DH4,平移距离为6,则阴影部分面积是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】AB两地相距600千米,甲、乙两车同时从A地出发驶向B地,甲车到达B地后立即返回,它们各自离A地的距离y(千米)与行驶时间x(时)之间的函数关系图象如图所示.

1)求甲车行驶过程中yx之间的函数关系式;

2)当它们行驶了7小时时,两车相遇,求乙车的速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在10×10的正方形网格中,每个小正方形的边长为1个单位长度.△ABC的顶点都在正方形网格的格点上,且通过两次平移(沿网格线方向作上下或左右平移)后得到△A'B'C',点C的对应点是直线上的格点C'

1)画出△A'B'C'

2)若连接AA′、BB′,则这两条线段之间的关系是   

3)试在直线l上画出格点P,使得由点A'B'C'P四点围成的四边形的面积为9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本小题满分8分)

如图,用两段等长的铁丝恰好可以分别围成一个正五边形和一个正六边形,其中正五边形的边长为(),正六边形的边长为()cm(其中),求这两段铁丝的总长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人用手指玩游戏,规则如下:i)每次游戏时,两人同时随机地各伸出一根手指;ii)两人伸出的手指中,大拇指只胜食指,食指只胜中指,中指只胜无名指,无名指只胜小拇指,小拇指只胜大拇指,否则不分胜负,依据上述规则,当甲、乙两人同时随机地各伸出一根手指时,

(1)求甲伸出小拇指取胜的概率;

(2)求乙取胜的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°ADABC的角平分线,若CD=4AC=12AB=15DEABE,则BDE的面积是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ABCD相交于O点,OMAB.

1)若∠1=2,求∠NOD

2)若∠1=BOC,求∠AOC与∠MOD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】李明准备进行如下操作实验,把一根长40 cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.

(1)要使这两个正方形的面积之和等于58 cm2,李明应该怎么剪这根铁丝?

(2)李明认为这两个正方形的面积之和不可能等于48 cm2,你认为他的说法正确吗?请说明理由.

查看答案和解析>>

同步练习册答案