精英家教网 > 初中数学 > 题目详情

【题目】郑州市农业路高架桥二层的开通,较大程度缓解了市内交通的压力,最初设计南阳路口上桥匝道时,其坡角为15°,后来从安全角度考虑将匝道坡角改为5°(见示意图),如果高架桥高CD=6米,匝道BD和AD每米造价均为4 000元,那么设计优化后修建匝道AD的投资将增加多少元?(参考数据:sin5°≈0.08,sin15°≈0.25,tan5°≈0.09,tan15°≈0.27,结果保留整数)

【答案】204000元.

【解析】

试题根据锐角三角函数可以分别表示出的长,从而可以求得设计优化后修建匝道的投资将增加多少元.

试题解析:由题意可得,

米,

∴在,

,

∴设计优化后修建匝道的投资将增加: (),

即设计优化后修建匝道的投资将增加元。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC的三边分别切⊙OD,E,F.

(1)若∠A=40°,求∠DEF的度数;

(2)AB=AC=13,BC=10,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形中,,将矩形绕点旋转得到矩形,使点的对应点落在上,于点,在上取点,使

(1)证:

(2)的度数.

(3)知,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AEGC

1)试猜想AEGC有怎样的位置关系,并证明你的结论;

2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AEGC.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,点D在边BC上,连接AD .

1)试利用尺规作图,求作:线段AE,使得AE是线段AD绕点A沿逆时针方向旋转得到的,且(保留作图痕迹,不写作法于证明过程);

2)连接DEACF,若,求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,,在的同侧作正、正和正,则四边形面积的最大值是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:

x

﹣2

﹣1

0

1

2

y

0

4

6

6

4

从上表可知,下列说法中,错误的是( )

A. 抛物线于x轴的一个交点坐标为(﹣2,0)

B. 抛物线与y轴的交点坐标为(0,6)

C. 抛物线的对称轴是直线x=0

D. 抛物线在对称轴左侧部分是上升的

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(问题情境)如图①,在△ABC中,若AB=10AC=6,求BC边上的中线AD的取值范围.

1)(问题解决)延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把ABAC2AD集中在△ABE中,利用三角形三边的关系即可判断出中线AD的取值范围是   

(反思感悟)解题时,条件中若出现中点中线字样,可以考虑构造以该中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同个三角形中,从而解决问题.

2)(尝试应用)如图②,△ABC中,∠BAC=90°ADBC边上的中线,试猜想线段ABACAD之间的数量关系,并说明理由.

3)(拓展延伸)如图③,△ABC中,∠BAC=90°DBC的中点,DMDNDMAB于点MDNAC于点N,连接MN.当BM=4MN=5AC=6时,请直接写出中线AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD为∠BAC的平分线,BMAD,垂足为M,AB=5,BM=2,AC=9,∠ABC与∠C的关系为(

A.ABC=2CB.∠ABC=CC.ABC=CD.ABC=3C

查看答案和解析>>

同步练习册答案