【题目】在菱形ABCD中,∠ABC=60°,P是射线BD上一动点,以AP为边向右侧作等边△APE,连接CE.
(1)如图1,当点P在菱形ABCD内部时,则BP与CE的数量关系是 ,CE与AD的位置关系是 .
(2)如图2,当点P在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;
(3)如图2,连接BE,若AB=2,BE=2,求AP的长.
【答案】(1)BP=CE,CE⊥AD;(2)结论仍然成立,理由见解析;(3)2
【解析】
(1)由菱形ABCD和∠ABC=60°可证△ABC与△ACD是等边三角形,由等边△APE可得AP=AE,∠PAE=∠BAC=60°,减去公共角∠PAC得∠BAP=∠CAE,根据SAS可证得△BAP≌△CAE,故有BP=CE,∠ABP=∠ACE.由菱形对角线平分一组对角可证∠ABP=30°,故∠ACE=30°即CE平分∠ACD,由AC=CD等腰三角形三线合一可得CE⊥AD.
(2)结论不变.证明过程同(1).
(3)在Rt△AOP中,求出OA,OP即可解决问题.
(1)BP=CE,CE⊥AD.
理由:∵菱形ABCD中,∠ABC=60°
∴AB=BC=CD=AD,∠ADC=∠ABC=60°
∴△ABC、△ACD是等边三角形
∴AB=AC,AC=CD,∠BAC=∠ACD=60°
∵△APE是等边三角形
∴AP=AE,∠PAE=60°
∴∠BAC-∠PAC=∠PAE-∠PAC
即∠BAP=∠CAE,
∴△BAP≌△CAE(SAS)
∴BP=CE,∠ABP=∠ACE
∵BD平分∠ABC
∴∠ACE=∠ABP=∠ABC=30°
∴CE平分∠ACD
∴CE⊥AD.
故答案为BP=CE,CE⊥AD.
(2)结论仍然成立.理由如下:如图,设CE交AD于H,连接AC.
∵四边形ABCD是菱形,∠ABC=60°,
∴△ABC,△ACD都是等边三角形,∠ABD=∠CBD=30°.
∵△APE是等边三角形,
∴AB=AC,AP=AE,∠BAC=∠PAE=60°.
∴△BAP≌△CAE.
∴BP=CE,∠ABP=∠ACE=30°.
∵∠CAH=60°,
∴∠CAH+∠ACH=90°.
∴∠AHC=90°,即CE⊥AD.
(3)如图,连接BE,
由(2)可知CE⊥AD,BP= CE.
在菱形ABCD中,AD∥BC,∴CE⊥BC.
∵BC=AB=2,BE=2,
在Rt△BCE中,CE==8.
∴BP=CE=8.
∵AC与BD是菱形的对角线,
∴∠ABD=∠ABC=30°,AC⊥BD.
∴OA=AB=,BO==3,
OP=BP-BO=5,
在Rt△AOP中,AP==2,
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,正方形中心在原点,且顶点的坐标为.动点分别从点同时出发,绕着正方形的边按顺时针方向运动,当点回到点时两点同时停止运动,运动时间为秒.连接,线段、与正方形的边围成的面积较小部分的图形记为.
(1)请写出点的坐标.
(2)若的速度均为1个单位长度秒,试判断在运动过程中,的面积是否发生变化,如果不变求出该值,如果变化说明理由.
(3)若点速度为2个单位长度秒,点为1个单位长度/秒,当的面积为时,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如下表,方程1、方程2、方程3…是按照一定规律排列的一列方程。
(1)猜想方程1的解,并将它们的解填在表中的空白处。
序号 | 方程 | 方程的解() |
1 | =_________,=__________ | |
2 | ||
3 | ||
… | …… | …… |
(2)若方程的解是,猜想a,b的值。
(3)请写出这列方程中的第n个方程和它的解。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,关于x的二次函数y=ax2﹣2ax(a>0)的顶点为C,与x轴交于点O、A,关于x的一次函数y=﹣ax(a>0).
(1)试说明点C在一次函数的图象上;
(2)若两个点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,是否存在整数k,满足?如果存在,请求出k的值;如果不存在,请说明理由;
(3)若点E是二次函数图象上一动点,E点的横坐标是n,且﹣1≤n≤1,过点E作y轴的平行线,与一次函数图象交于点F,当0<a≤2时,求线段EF的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,给正五边形的顶点依次编号 12345,若从某一顶点开始,沿正五边形的边顺时针行走,顶点编号数字是几就走几个边长,则称 这种走法为一次移位,如:小宇在编号为 3 的顶点上时,那么他应该走 3 个边长,即 3-4-5-1 为第一次移位,这时他到达编号为 1 的顶点;然后从 1-2 为第二次移位.若小宇从编号为 2 的顶点开始,第 14 次移位后,则他所处顶点的编号为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,有一座抛物线形拱桥,桥下面在正常水位时,AB宽20 m,水位上升到警戒线CD时,CD到拱桥顶E的距离仅为1 m,这时水面宽度为10 m.
(1)在如图所示的坐标系中求抛物线的解析式;
(2)若洪水到来时,水位以每小时0.3 m的速度上升,从正常水位开始,持续多少小时到达警戒线?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A1,A2,A3,…,An是x轴上的点,且OA1=A1A2=A2A3=A3A4=…=An-1An=1,分别过点A1,A2,A3,…,An作x轴的垂线交二次函数y=x2(x>0)的图象于点P1,P2,P3,…,Pn.若记△OA1P1的面积为S1,过点P1作P1B1⊥A2P2于点B1,记△P1B1P2的面积为S2,过点P2作P2B2⊥A3P3于点B2,记△P2B2P3的面积为S3……依次进行下去,最后记△Pn-1Bn-1Pn(n>1)的面积为Sn,则Sn=( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小亮房间窗户的窗帘如图1所示,它是由两个四分之一圆组成(半径相同)
⑴请用代数式表示装饰物的面积:________,用代数式表示窗户能射进阳光的面积是______(结果保留π)
⑵当a=,b=1时,求窗户能射进阳光的面积是多少?(取π≈3 )
⑶小亮又设计了如图2的窗帘(由一个半圆和两个四分之一圆组成,半径相同),请你帮他算一算此时窗户能射进阳光的面积是否更大?如果更大,那么大多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④CO平分∠AOE;⑤∠AOB=60°.恒成立的结论有__.(把你认为正确的序号都填上)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com