【题目】如图,矩形中,相交于点O,过点B作交于点F,交于点M,过点D作交于点E,交于点N,连接.则下列结论:
①;②;
③;④当时,四边形是菱形.
其中,正确结论的个数是( )
A.1个B.2个C.3个D.4个
【答案】D
【解析】
通过判断△AND≌△CMB即可证明①,再判断出△ANE≌△CMF证明出③,再证明出△NFM≌△MEN,得到∠FNM=∠EMN,进而判断出②,通过 DF与EB先证明出四边形为平行四边形,再通过三线合一以及内角和定理得到∠NDO=∠ABD=30°,进而得到DE=BE,即可知四边形为菱形.
∵BF⊥AC
∴∠BMC=90°
又∵
∴∠EDO=∠MBO,DE⊥AC
∴∠DNA=∠BMC=90°
∵四边形ABCD为矩形
∴AD=BC,AD∥BC,DC∥AB
∴∠ADB=∠CBD
∴∠ADB-∠EDO=∠CBD-∠MBO即∠AND=∠CBM
在△AND与△CMB
∵
∴△AND≌△CMB(AAS)
∴AN=CM,DN=BM,故①正确.
∵AB∥CD
∴∠NAE=∠MCF
又∵∠DNA=∠BMC=90°
∴∠ANE=∠CMF=90°
在△ANE与△CMF中
∵
∴△ANE≌△CMF(ASA)
∴NE=FM,AE=CF,故③正确.
在△NFM与△MEN中
∵
∴△NFM≌△MEN(SAS)
∴∠FNM=∠EMN
∴NF∥EM,故②正确.
∵AE=CF
∴DC-FC=AB-AE,即DF=EB
又根据矩形性质可知DF∥EB
∴四边形DEBF为平行四边
根据矩形性质可知OD=AO,
当AO=AD时,即三角形DAO为等边三角形
∴∠ADO=60°
又∵DN⊥AC
根据三线合一可知∠NDO=30°
又根据三角形内角和可知∠ABD=180°-∠DAB-∠ADB=30°
故DE=EB
∴四边形DEBF为菱形,故④正确.
故①②③④正确
故选D.
科目:初中数学 来源: 题型:
【题目】两块等腰直角三角形纸片AOB和COD按图1所示放置,直角顶点重合在点O处,AB=13,CD=7.保持纸片AOB不动,将纸片COD绕点O逆时针旋转a(0α90°),如图2所示.当BD与CD在同一直线上(如图3)时,则△ABC的面积为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[m﹣1,m+1,﹣2m]的函数的一些结论,其中不正确的是( )
A.当m=2时,函数图象的顶点坐标为
B.当m>1时,函数图象截x轴所得的线段长大于3
C.当m<0时,函数在x<时,y随x的增大而增大
D.不论m取何值,函数图象经过两个定点
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣2x+c与x轴交于点A(1,0),点B(﹣3,0),与y轴交于点C,连接BC,点P在第二象限的抛物线上,连接PC、PO,线段PO交线段BC于点 E.
(1)求抛物线的表达式;
(2)若△PCE的面积为S1,△OCE的面积为S2,当=时,求点P的坐标;
(3)已知点C关于抛物线对称轴的对称点为点N,连接BN,点H在x轴上,当∠HCB=∠NBC时,
①求满足条件的所有点H的坐标;
②当点H在线段AB上时,点Q是线段BH外一点,QH=1,连接BQ,将线段BQ绕着点Q顺时针旋转90°,得到线段QM,连接MH,直接写出线段MH的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】雾霾天气持续笼罩我国大部分地区,困扰着广大市民的生活,口罩市场出现热销,小明的爸爸用12000元购进甲、乙两种型号的口罩在自家商店销售,销售完后共获利2700元,进价和售价如表:
(1)小明爸爸的商店购进甲、乙两种型号口罩各多少袋?
(2)该商店第二次以原价购进甲、乙两种型号口罩,购进甲种型号口罩袋数不变,而购进乙种型号口罩袋数是第一次的2倍,甲种口罩按原售价出售,而效果更好的乙种口罩打折让利销售,若两种型号的口罩全部售完,要使第二次销售活动获利不少于2460元,每袋乙种型号的口罩最多打几折?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A:机器人;B:航模;C:科幻绘画;D:信息学;E:科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.
根据统计图中的信息解答下列问题:
(1)本次参加比赛的学生人数是_________名;
(2)把条形统计图补充完整;
(3)求扇形统计图中表示机器人的扇形圆心角的度数;
(4)在C组最优秀的3名同学(1名男生2名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线向上平移2个单位,得到直线,直线与双曲线的一个交点的纵坐标为.
(1)求的值;
(2)当时,求的取值范围;
(3)直线与双曲线的另一个交点为,求坐标原点到线段的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年疫情期间,为防止疫情扩散,人们见面的机会少了,但是随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷,为此,孙老师设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种)进行调查.将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:
(1)这次参与调查的共有 人;在扇形统计图中,表示“微信”的扇形圆心角的度数为 ;其它沟通方式所占的百分比为 .
(2)将条形统计图补充完整;
(3)如果我国有13亿人在使用手机.
①请估计最喜欢用“微信”进行沟通的人数;
②在全国使用手机的人中随机抽取一人,用频率估计概率,求抽取的恰好使用“QQ”的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是半圆O的直径,且AB=6cm,点C为半圆上的一点,将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com