【题目】某地民政局计划将批物资运往灾区,在这批物资中,帐篷和食品共320件,帐篷比食品多80件.
(1)求帐篷和食品各多少件?
(2)现计划租用甲、乙两种货车共8辆,一次性将这些物资全部运往灾区,已知甲型货车最多可装帐篷40件和食品10件;乙种货车最多可装帐篷和食品各20件,计算说明安排甲、乙两种货车有几种方案?
(3)在(2)的条件下,甲种货车每辆需付运费4000元,乙种货车每辆需付运费3600元,民政局应选择哪种运输方案,才能使运输费用最少?最少费用是多少?
【答案】(1)故帐篷有200件,食品有120件;(2)设计方案共有3种,分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆;(3)方案①运费最少,最少运费是29600元.
【解析】
(1)设该校采购了x件帐篷,y件食品,根据题意列出方程组求解即可;
(2)设甲种货车安排了z辆,则乙种货车安排了(8﹣z)辆,根据题意列出不等式组,求得z的取值范围,然后即可设计方案;
(3)分别计算出(2)设计的方案的费用,取最小费用即可.
解:(1)设该校采购了x件帐篷,y件食品,
根据题意,得,
解得,
故帐篷有200件,食品有120件;
(2)设甲种货车安排了z辆,则乙种货车安排了(8﹣z)辆,
则,
解得2≤z≤4,
则z=2或3或4,民政局安排甲、乙两种型号货车时有3种方案,
设计方案分别为:①甲车2辆,乙车6辆;
②甲车3辆,乙车5辆;
③甲车4辆,乙车4辆;
(3)3种方案的运费分别为:
①2×4000+6×3600=29600(元);
②3×4000+5×3600=30000(元);
③4×4000+4×3600=30400(元);
∵方案一的运费小于方案二的运费小于方案三的运费,
∴方案①运费最少,最少运费是29600元.
科目:初中数学 来源: 题型:
【题目】如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O的一动点,P是线段CN上一点,过点P分别作PQ∥OA交OB于点Q,PM∥OB交OA于点M.
(1)若∠AOB=60,OM=4,OQ=1,求证:CN⊥OB.
(2)当点N在边OB上运动时,四边形OMPQ始终保持为菱形.
①问: 的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由.
②设菱形OMPQ的面积为S1,△NOC的面积为S2,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一玩具工厂用于生产的全部劳力为450个工时,原料为400个单位.生产一个小熊要使用15个工时、20个单位的原料,售价为80元;生产一个小猫要使用10个工时、5个单位的原料,售价为45元.在劳力和原料的限制下合理安排生产小熊、小猫的个数,可以使小熊和小猫的总售价尽可能高.请用你所学过的数学知识分析,总售价是否可能达到2200元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学对九年级准备选考1分钟跳绳的同学进行测试,测试结果如下表:
频数分布表:
组别 | 跳绳(次/1分钟) | 频数 |
第1组 | 190~199 | 5 |
第2组 | 180~189 | 11 |
第3组 | 170~179 | 23 |
第4组 | 160~169 | 33 |
请回答下列问题:
(1)此次测试成绩的中位数落在第 组中;
(2)如果成绩达到或超过180次/分钟的同学可获满分,那么本次测试中获得满分的人数占参加测试人数的 %;
(3)如果该校九年级参加体育测试的总人数为200人,若要绘制一张统计该校各项目选考人数分布的扇形图(如图),图中A所在的扇形表示参加选考1分钟跳绳的人数占测试总人数的百分比,那么该扇形的圆心角应为 °;
(4)如果此次测试的平均成绩为171次/分钟,那么这个成绩是否可用来估计该校九年级学生跳绳的平均水平?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在□ABCD中,点G为对角线AC的中点,过点G的直线EF分别交边AB、CD于点E、F,过点G的直线MN分别交边AD、BC于点M、N,且∠AGE=∠CGN.
(1)求证:四边形ENFM为平行四边形;
(2)当四边形ENFM为矩形时,求证:BE=BN.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解八年级学生一学期参加公益活动的时间情况,抽取50名八年级学生为样本进行调查,按参加公益活动的时间t(单位:小时),将样本分成五类:A类(0≤t≤2),B类(2<t≤4),C类(4<t≤6),D类(6<t≤8),E类(t>8),绘制成尚不完整的条形统计图.
(1)样本中,E类学生有 人,请补全条形统计图;
(2)该校八年级共600名学生,求八年级参加公益活动时间6<t≤8的学生数;
(3)从样本中选取参加公益活动时间在0≤t≤4的2人做志愿者,求这2人参加公益活动时间都在2<t≤4中的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足为E.
(1)求证:△ABD≌△ECB;
(2)若∠DBC=50°,求∠DCE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.
(1)求出y与x的函数关系式;
(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?
(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com