精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AD=AC,BE=BC.

(1)若∠ACB=96°求∠DCE的度数.

(2)问:∠DCE与∠A,∠B之间存在怎样的数量关系(直接写出答案)?

【答案】(1)42°(2)∠DCE=(∠A+∠B)

【解析】试题分析:(1)先由等边对等角的性质和三角形内角和定理得出∠A,∠B,∠ACB+∠A+∠B,然后等量代换求出∠DCE;
(2)由(1)可知∠DCE=180°-(∠CED+∠CDE),再由∠A=180°-2∠CDE,∠B=180°-2∠CED,得出∠1=90°-∠B,∠2=90°-∠A,将它们代入即可得出∠DCE=(∠A+∠B),即可得到∠A,∠B与∠DCE之间的数量关系.

试题解析:(1)∵AD=AC,

∴∠ADC=∠ACD.

∴∠A=180°-2∠ADC.

∵BE=BC,

∴∠CEB=∠ECB.

∴∠B=180°-2∠CEB.

∵∠ACB=96°,∴∠A+∠B=84°.

∴(180°-2∠ADC)+(180°-2∠CEB)=84°.

∴∠CEB+∠ADC=138°.∴∠DCE=42°.

(2)∠DCE=(∠A+∠B).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一名考生步行前往考场,5分钟走了总路程的,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1,出租车匀速),则他到达考场所花的时间比一直步行提前了________分钟。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知在ABCABACBECF都是ABC的高线PBE上一点BPACQCF延长线上一点CQAB连结APAQQP.求证:

(1)AQPA.

(2)APAQ.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某园艺公司对一块直角三角形的花圃进行改造测得两直角边长为6m8m现要将其扩建成等腰三角形且扩充部分是以8m为直角边的直角三角形求扩建后的等腰三角形花圃的周长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某潜艇从海平面以下27米上升到海平面以下18米,此潜艇上升了_____米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某食品厂从生产的袋装食品中抽出样品8袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:

1)这8袋样品的总质量比标准质量多还是少?多或少几克?

2若标准质量为500克,则抽样检测这8袋的总质量是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图4所示,在ABC中,C=90°AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点QC点出发沿CB边向点B以2cm/s的速度移动.

(1)、如果P、Q同时出发,几秒钟后,可使PCQ的面积为8平方厘米?

(2)、点P、Q在移动过程中,是否存在某一时刻,使得PCQ的面积等于ABC的面积的一半.若存在,求出运动的时间;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】a是有理数,那么下列各式中一定表示正数的是(  )

A. 2018a2 B. a+2018 C. |2018a| D. |a|+2018

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=x2+bx+c经过点B,与直线l的另一个交点为C(4,n).

(1)求n的值和抛物线的解析式;

(2)点D在抛物线上,DEy轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0t4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;

(3)将AOB绕平面内某点M旋转90°或180°,得到A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.

查看答案和解析>>

同步练习册答案