【题目】一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为y1(km),慢车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为s(km).y1,y2与x的函数关系图象如图1所示,s与x的函数关系图象如图2所示.则下列判断:①图1中a=3;②当x=h时,两车相遇;③当x=时,两车相距60km;④图2中C点坐标为(3,180);⑤当x=h或h时,两车相距200km.其中正确的有_____(请写出所有正确判断的序号)
【答案】①②④.
【解析】
根据S与x之间的函数关系式可以得到当位于C点时,两人之间的距离增加变缓,此时快车到站,此时a=3,故①正确;根据相遇可知y1=y2,列方程求解可得x的值为,故②正确;分两种情况考虑,相遇前和相遇后两车相距60km,x=是相遇前的时间,故③正确;先确定b的值,根据函数的图象可以得到C的点的坐标,故④正确;分两车相遇前和两车相遇后两种情况讨论,即可求得x的值,当x=h时不合题意,故⑤不正确.
解:∵由S与x之间的函数的图象可知:当位于C点时,两车之间的距离增加变缓,
∴由此可以得到a=3,故①正确;
设y1=kx+b,将(0,300)、(3,0)代入,
得:,解得:,
∴y1=﹣100x+300,
设y2=mx,
将点(5,300)代入,得:5m=300,
解得:m=60,
∴慢车离乙地的距离y2解析式为:y2=60x;
∴当y1=y2时,两车相遇,
可得:﹣100x+300=60x,
解得:x=h,故②正确;
分两种情况考虑,相遇前两车相距60km,
﹣100x+300﹣60x=60,解得,x= h,
相遇后两车相距60km,
60x﹣(﹣100x+300)=60,解得,x= h,
∴当x=h或h时,两车相距60km,故③不正确;
快车每小时行驶=100千米,慢车每小时行驶60千米,两地之间的距离为300千米,
∴b=300÷(100+60)=,
由函数的图象可以得到C的点的横坐标为3,即快车到达乙地,此时慢车所走的路程为3×60=180千米,
∴C点坐标为(3,180),故④正确;
分两种情况考虑,相遇前两车相距200km,
﹣100x+300﹣60x=200,解得,x= h,
相遇后两车相距60km,
60x﹣(﹣100x+300)=200,解得,x= h,
∵>3,
∴当x=h不合题意,舍去.
∴当x=h时,两车相距200km,故⑤不正确.
故答案为:①②④.
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的平分线分别交AB、BD于点M、N,若AD=4,则线段AM的长为( )
A. 2B. 2C. 4﹣D. 8﹣4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+3的图象经过A(﹣1,0)、C(3,0)、并且与y轴相交于点B,点P是直线BC上方的抛物线上的一动点,PQ∥y轴交直线BC于点Q.
(1)求此二次函数的表达式;
(2)求线段PQ的最大值;
(3)在抛物线的对称轴上,是否存在点M,使△MAB为等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小军自制的匀速直线运动遥控车模型甲、乙两车同时分别从、出发,沿直线轨道同时到达处,已知乙的速度是甲的速度的1.5倍,甲、乙两遥控车与处的距离、(米)与时间(分钟)的函数关系如图所示,则下列结论中:①的距离为120米;②乙的速度为60米/分;③的值为;④若甲、乙两遥控车的距离不少于10米时,两车信号不会产生互相干扰,则两车信号不会产生互相干扰的的取值范围是,其中正确的有( )个
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),则点A1,C1的坐标分别是 ( )
A. A1(4,4),C1(3,2) B. A1(3,3),C1(2,1)
C. A1(4,3),C1(2,3) D. A1(3,4),C1(2,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c的图象如图所示,给出下列结论:①2a+b>0;
②b>a>c;③若-1<m<n<1,则m+n<;④3|a|+|c|<2|b|.其中正确的结论个数是( )
A. ①③④ B. ①③ C. ①④ D. ②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:二次函数,当时,函数有最大值.
(1)求此二次函数图象与坐标轴的交点;
(2)将函数图象轴下方部分沿轴向上翻折,得到的新图象,若点是翻折得到的抛物线弧部分上任意一点,若关于的一元二次方程恒有实数根时,求实数的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.
(1)求证:AE与⊙O相切于点A;
(2)若AE∥BC,BC=2,AC=2,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形中,,是的中点.将沿对折至,延长交于点,连接、,则下列结论正确的有( )个.
(1) (2)
(3)的面积是18 (4)
A. 4B. 3C. 2D. 1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com