精英家教网 > 初中数学 > 题目详情

【题目】A、B两地相距20千米,甲、乙两人都从A地去B地,图中射线l1l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系.

下列说法:

①乙晚出发1小时;

②乙出发3小时后追上甲;

③甲的速度是4千米/小时,乙的速度是6千米/小时;

④乙先到达B地.其中正确的个数是(  )

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

观察函数图象,从图象中获取信息,根据速度,路程,时间三者之间的关系求得结果.

解:由函数图象可知,乙比甲晚出发1小时,故①正确;
乙出发3-1=2小时后追上甲,故②错误;
甲的速度为:12÷3=4(千米/小时),故③正确;
乙的速度为:12÷(3-1)=6(千米/小时),
则甲到达B地用的时间为:20÷4=5(小时),
乙到达B地用的时间为:20÷6=3(小时),
1+3=4<5,
∴乙先到达B地,故④正确;
正确的有3个.
故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知∠EOC=110°,将角的一边OE绕点O旋转,使终止位置OD和起始位置OE成一条直线,以点O为中心将OC顺时针旋转到OA,使∠COA=DOC,过点O作∠COA的平分线OB.

(1)借助量角器、直尺补全图形;

(2)求∠BOE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(-3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.

(1)求点C的坐标和直线l1的解析式;

(2)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y= x2+bx+c经过矩形ABCO的顶点B、C,D为BC的中点,直线AD与y轴交于E点,与抛物线y= x2+bx+c交于第四象限的F点.

(1)求该抛物线解析式与F点坐标;
(2)如图(2),动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;同时,动点M从点A出发,沿线段AE以每秒 个单位长度的速度向终点E运动.过点P作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒

①问EP+PH+HF是否有最小值?如果有,求出t的值;如果没有,请说明理由.
②若△PMH是等腰三角形,请直接写出此时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列方程:

(1)4-m=-m; (2)56-8x=11+x;

(3) x+1=5+x; (4)-5x+6+7x=1+2x-3+8x.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中(AD>AB),点EBC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是(  )

A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在长方形ABCD中,点PCD中点,点Q从点A开始,沿着A→B→C→P的路线匀速运动,设APQ的面积是y,点Q经过的路线长度为x,图2坐标系中折线OEFG表示yx之间的函数关系,点E的坐标为(4,6),则点G的坐标是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A、B两城由笔直的铁路连接,动车甲从A向B匀速前行,同时动车乙从B向A匀速前行,到达目的地时停止,其中动车乙速度较快,设甲乙两车相距y(km),甲行驶的时间为t(h),y关于t的函数图象如图所示.
(1)填空:动车甲的速度为(km/h),动车乙的速度为(km/h);
(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;
(3)两车何时相距1200km?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是△ABC的内切圆,切点为DEF,ADBE的长为方程的两个根,则△ABC的周长为 ______

查看答案和解析>>

同步练习册答案