精英家教网 > 初中数学 > 题目详情

【题目】解下列方程:

(1)4-m=-m; (2)56-8x=11+x;

(3) x+1=5+x; (4)-5x+6+7x=1+2x-3+8x.

【答案】(1) m=-10;(2)x=5;(3)x=4;(4)x=1.

【解析】试题分析:(1)移项、合并同类项后,系数化为1即可得方程的解;(2)移项、合并同类项后,系数化为1即可得方程的解;(3)移项、合并同类后项即可得方程的解;(4)移项、合并同类项后,系数化为1即可得方程的解.

试题解析:

(1) 移项,-m+m=-4.

合并同类项,m=-4.

系数化为1,m=-10.

(2) 移项,-8x-x=11-56.

合并同类项,-9x=-45.

系数化为1,x=5.

(3) 移项,x-x=5-1.

合并同类项,x=4.

(4) 移项,-5x+7x-2x-8x=1-3-6.

合并同类项,-8x=-8.

系数化为1,x=1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,数轴的单位长度为1.

(1)如果点 A,D 表示的数互为相反数,那么点B表示的数是多少?

(2)如果点B,D表示的数互为相反数,那么图中表示的四个点中,哪一点表示的数的绝对值最大?为什么?

(3)当点B为原点时,若存在一点MA的距离是点MD的距离的2倍,则点M所表示的数是多少

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,点MN分别在ABBC上,将沿MN翻折,得,若,则的度数为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD为平行四边形,EAD上的一点,连接EB并延长,使,连接EC并延长,使,连接FG的中点,连接DH

求证:四边形AFHD为平行四边形;

,求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2﹣(2k+1)x+4(k﹣)=0.

(1)判断这个一元二次方程的根的情况;

(2)若等腰三角形的一边长为3,另两条边的长恰好是这个方程的两个根,求这个等腰三角形的周长及面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,把一张长10厘米、宽6厘米的长方形纸板分成两个相同的直角三角形.

(1)甲三角形(如图2)旋转一周,可以形成一个怎样的几何体?它的体积是多少立方米?

(2)乙三角形(如图3)旋转一周,可以形成一个怎样的几何体?它的体积是多少立方米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.
(1)求证:△AOD≌△EOC;
(2)连接AC,DE,当∠B=∠AEB=°时,四边形ACED是正方形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,∠ABD、CDB的平分线BE、DF分别交边AD、BC于点E、F.

(1)求证:四边形BEDF是平行四边形;

(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国古籍《周髀算经》中早有记载“勾三股四弦五”,下面我们来探究两类特殊的勾股数.通过观察完成下面两个表格中的空格(以下a、b、c为Rt△ABC的三边,且a<b<c):

表一 表二

a

b

c

a

b

c

3

4

5

6

8

10

5

12

13

8

15

17

7

24

25

10

24

26

9

41

12

37

(1)仔细观察,表一中a为大于1的奇数,此时b、c的数量关系是_____________

a、b、c之间的数量关系是_________________________

(2)仔细观察,表二中a为大于4的偶数,此时b、c的数量关系是_____________

a、b、c之间的数量关系是_________________________

(3)我们还发现,表一中的三边长“3,4,5”与表二中的“6,8,10”成倍数关系,表一中的“5,12,13”与表二中的“10,24,26”恰好也成倍数关系……请直接利用这一规律计算:在Rt△ABC中,当时,斜边c的值.

查看答案和解析>>

同步练习册答案