【题目】如图,在△ABC中,AD是BC上的高,tanB=cos∠DAC.
(1)求证:AC=BD;
(2)若sin∠C= ,BC=12,求AD的长.
【答案】
(1)证明:∵AD是BC上的高,
∴AD⊥BC,
∴∠ADB=90°,∠ADC=90°,
在Rt△ABD和Rt△ADC中,
∵tanB= ,cos∠DAC= ,
又∵tanB=cos∠DAC,
∴ = ,
∴AC=BD.
(2)解:在Rt△ADC中, ,
故可设AD=12k,AC=13k,
∴CD= =5k,
∵BC=BD+CD,又AC=BD,
∴BC=13k+5k=18k
由已知BC=12,
∴18k=12,
∴k= ,
∴AD=12k=12× =8.
【解析】(1)由于tanB=cos∠DAC,所以根据正切和余弦的概念证明AC=BD;(2)设AD=12k,AC=13k,然后利用题目已知条件即可解直角三角形.
科目:初中数学 来源: 题型:
【题目】如图,A(1,0)、B(7,0),⊙A、⊙B的半径分别为1和2,将⊙A沿x轴向右平移3个单位,则此时该圆与⊙B的位置关系是( )
A.外切
B.相交
C.内含
D.外离
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:
(1)这次抽查的家长总人数为为多少;
(2)请补全条形统计图和扇形统计图;
(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是多少.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为2的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为( )
A.(1, )
B.(﹣1,2)
C.(﹣1, )
D.(﹣1, )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学初二年级抽取部分学生进行跳绳测试.并规定:每分钟跳90次以下的为不及格;每分钟跳9099次的为及格;每分钟跳100109次的为中等;每分钟跳110119次的为良好;每分钟跳120次及以上的为优秀.测试结果整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:
(1)参加这次跳绳测试的共有人;
(2)补全条形统计图;
(3)在扇形统计图中,“中等”部分所对应的圆心角的度数是;
(4)如果该校初二年级的总人数是450人,根据此统计数据,请你估算该校初二年级跳绳成绩为“优秀”的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx﹣3经过A(﹣1,0)B(4,0)两点,与y轴交于点C
(1)求抛物线解析式;
(2)点N是x轴下方抛物线上的一点,连接AN,若tan∠BAN=2,求点N的纵坐标;
(3)点D是点C关于抛物线对称轴的对称点,连接AD,在x轴上是否存在E,使∠AED=∠CAD?如果存在,请直接写出点E坐标,如果不存在,请说明理由;
(4)连接AC、BC,△ABC的中线BM交y轴于点H,过点A作AG⊥BC,垂足为G,点F是线段BH上的一个动点(不与B、H重合),点F沿线段BH从点B向H移动,移动后的点记作点F′,连接F′C、F′A,△F′AC的F′C、F′A两边上的高交于点P,连接AP,CP,△F′AC与△PAC的面积分别记为S1 , S2 , S1和S2的乘积记为m,在点F的移动过程中,探究m的值变化情况,若变化,请直接写出m的变化范围,若不变,直接写出这个m值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AD=2 ,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com