精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=ax2+bx﹣3经过A(﹣1,0)B(4,0)两点,与y轴交于点C

(1)求抛物线解析式;
(2)点N是x轴下方抛物线上的一点,连接AN,若tan∠BAN=2,求点N的纵坐标;
(3)点D是点C关于抛物线对称轴的对称点,连接AD,在x轴上是否存在E,使∠AED=∠CAD?如果存在,请直接写出点E坐标,如果不存在,请说明理由;
(4)连接AC、BC,△ABC的中线BM交y轴于点H,过点A作AG⊥BC,垂足为G,点F是线段BH上的一个动点(不与B、H重合),点F沿线段BH从点B向H移动,移动后的点记作点F′,连接F′C、F′A,△F′AC的F′C、F′A两边上的高交于点P,连接AP,CP,△F′AC与△PAC的面积分别记为S1 , S2 , S1和S2的乘积记为m,在点F的移动过程中,探究m的值变化情况,若变化,请直接写出m的变化范围,若不变,直接写出这个m值.

【答案】
(1)

解:将点A和点B的坐标代入抛物线的解析式得:

解得:

∴抛物线的解析式为y= x2 x﹣3.


(2)

如图1所示:过点N作NM⊥x轴点M,则∠AMN=90°.

设点N的坐标为(x, x2 x﹣3),则AM=x+1,MN=﹣ x2+ x+3.

∵tan∠BAN=2,

=2,解得:x= 或x=﹣1(舍去).

∴MN=2AM=3×( +1)=

∴点N的坐标为( ,﹣ ).


(3)

如图2所示:连接CD,过点C作CG⊥AD,垂足为G,过点D作DF⊥x轴,垂足为F.

∵点C与点D关于对称轴直线x= 对称,

∴D(3,﹣3).

∴DF=3,CD=3.

依据两点间的距离公式可知AD=5,AC=

∵SACD= CDOC= ADCG,

∴CG=

∴AG= =

∴tan∠CAD=

∵∠AED=∠CAD,

∴tan∠AED= = = ,即 = = ,解得EF=EF′=

∴E(﹣ ,0),E′( ,0).

∴点E的坐标为(﹣ ,0)或( ,0).


(4)

如图3所示:

∵A(﹣1,0),(4,0),C(0,﹣3),

∴AB=BC=5,AC=

∵MB为△ABC的中线,

∴MB⊥AC,MC=

∴MB为AC的垂直平分线,

∴∠AF′M=∠CF′M.

∵点P为AF′与CF′的高线的交点,

∴∠CAQ+∠ACQ=90°,∠CAQ+∠MF′A=90°,

∴∠ACQ=∠AF′M.

∴∠ACQ=∠CF′M.

又∵∠CMP=∠CMF′,

∴△CMP∽△F′MC.

= ,即MPMF′=

∴m=S1S2= ACPM ACMF′= ×( 2× =


【解析】(1)将点A和点B的坐标代入抛物线的解析式得到关于a、b的方程组,然后求得a、b的值即可;(2)过点N作NM⊥x轴点M,则∠AMN=90°.设点N的坐标为(x, x2 x﹣3),则AM=x+1,MN=﹣ x2+ x+3,然后依据tan∠BAN=2,列方程求解即可;(3)连接CD,过点C作CG⊥AD,垂足为G,过点D作DF⊥x轴,垂足为F.先求得AC,AD的长,依据SACD= CDOC= ADCG,可求得CG的长,然后依据勾股定理可求得AG的长,从而可得到tan∠AED= = = ,从而可求得EF和E′F的长,然后求得点E和点E′的坐标即可;(4)先证明AB=BC,由等腰三角形的性质可知MB为AC的垂直平分线,然后再证明△CMP∽△F′MC,依据相似三角形的性质可求得MPMF′= ,最后由m=S1S2= ACPM ACMF′求解即可.
【考点精析】解答此题的关键在于理解锐角三角函数的定义的相关知识,掌握锐角A的正弦、余弦、正切、余切都叫做∠A的锐角三角函数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,10个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这10个正方形分成面积相等的两部分,则该直线l的解析式为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD是BC上的高,tanB=cos∠DAC.
(1)求证:AC=BD;
(2)若sin∠C= ,BC=12,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB=∠DCE=90,F是DE的中点,H是AE的中点,G是BD的中点.

(1)如图1,若点D.E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为和位置关系为
(2)将图1中三角板△DEC绕着点C顺时针(逆时针)旋转,旋转角为a(0°<a<180°)以图2和图3的情况为例,其中图2中旋转至点A、C、E在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若不成立,请说明理由;若成立,请从图2和图3中选其一证明
(3)在△DEC绕点C按图3方式旋转的过程中,当直线FH经过点C时,若AC=2,CD= ,请直接写出FG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了创建书香校园,切实引导学生多读书,读好书.某中学开展了“好书伴我成长”的读书节活动,为了了解本校学生每周课外阅读时间,随机抽取部分学生进行问卷调查,将课外阅读时间分为A、B、C、D四组,并利用臭氧所得的数据绘制了如下统计图.

组别

课外阅读t(单位:时)

A

X<2

B

2≤x<3

C

3≤x<4

D

x≥4

请根据图中提供的信息,解答下列问题:
(1)一共调查了名学生;
(2)扇形统计图中A组的圆心角度数
(3)直接补全条形统计图
(4)若该校有2400名学生,根据你所调查的结果,估计每周课外阅读时间不足3小时的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一张矩形纸片ABCD,AD=5cm,AB=3cm,将纸片沿ED折叠,A点刚好落在BC边上的A'处,如图,这时AE的长应该是(
A. cm
B. cm
C. cm
D. cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形AOCB边OC在x轴上点B的坐标为(3,1),将此矩形折叠,使点C与点A重合,点B折至点B'处,折痕为EF,则点B'的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】保护视力要求人写字时眼睛和笔端的距离应超过30cm,图1是一位同学的坐姿,把他的眼睛B,肘关节C和笔端A的位置关系抽象成图2的△ABC,已知BC=30cm,AC=22cm,∠ACB=53°,他的这种坐姿符合保护视力的要求吗?请说明理由.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与y轴交与点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.

(1)求抛物线的解析式;
(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;
(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案