【题目】如图,抛物线y=ax2+bx﹣3经过A(﹣1,0)B(4,0)两点,与y轴交于点C
(1)求抛物线解析式;
(2)点N是x轴下方抛物线上的一点,连接AN,若tan∠BAN=2,求点N的纵坐标;
(3)点D是点C关于抛物线对称轴的对称点,连接AD,在x轴上是否存在E,使∠AED=∠CAD?如果存在,请直接写出点E坐标,如果不存在,请说明理由;
(4)连接AC、BC,△ABC的中线BM交y轴于点H,过点A作AG⊥BC,垂足为G,点F是线段BH上的一个动点(不与B、H重合),点F沿线段BH从点B向H移动,移动后的点记作点F′,连接F′C、F′A,△F′AC的F′C、F′A两边上的高交于点P,连接AP,CP,△F′AC与△PAC的面积分别记为S1 , S2 , S1和S2的乘积记为m,在点F的移动过程中,探究m的值变化情况,若变化,请直接写出m的变化范围,若不变,直接写出这个m值.
【答案】
(1)
解:将点A和点B的坐标代入抛物线的解析式得: ,
解得: .
∴抛物线的解析式为y= x2﹣ x﹣3.
(2)
如图1所示:过点N作NM⊥x轴点M,则∠AMN=90°.
设点N的坐标为(x, x2﹣ x﹣3),则AM=x+1,MN=﹣ x2+ x+3.
∵tan∠BAN=2,
∴ =2,解得:x= 或x=﹣1(舍去).
∴MN=2AM=3×( +1)= ,
∴点N的坐标为( ,﹣ ).
(3)
如图2所示:连接CD,过点C作CG⊥AD,垂足为G,过点D作DF⊥x轴,垂足为F.
∵点C与点D关于对称轴直线x= 对称,
∴D(3,﹣3).
∴DF=3,CD=3.
依据两点间的距离公式可知AD=5,AC= .
∵S△ACD= CDOC= ADCG,
∴CG= .
∴AG= = .
∴tan∠CAD= .
∵∠AED=∠CAD,
∴tan∠AED= = = ,即 = = ,解得EF=EF′= .
∴E(﹣ ,0),E′( ,0).
∴点E的坐标为(﹣ ,0)或( ,0).
(4)
如图3所示:
∵A(﹣1,0),(4,0),C(0,﹣3),
∴AB=BC=5,AC= .
∵MB为△ABC的中线,
∴MB⊥AC,MC= .
∴MB为AC的垂直平分线,
∴∠AF′M=∠CF′M.
∵点P为AF′与CF′的高线的交点,
∴∠CAQ+∠ACQ=90°,∠CAQ+∠MF′A=90°,
∴∠ACQ=∠AF′M.
∴∠ACQ=∠CF′M.
又∵∠CMP=∠CMF′,
∴△CMP∽△F′MC.
∴ = ,即MPMF′= .
∴m=S1S2= ACPM ACMF′= ×( )2× = .
【解析】(1)将点A和点B的坐标代入抛物线的解析式得到关于a、b的方程组,然后求得a、b的值即可;(2)过点N作NM⊥x轴点M,则∠AMN=90°.设点N的坐标为(x, x2﹣ x﹣3),则AM=x+1,MN=﹣ x2+ x+3,然后依据tan∠BAN=2,列方程求解即可;(3)连接CD,过点C作CG⊥AD,垂足为G,过点D作DF⊥x轴,垂足为F.先求得AC,AD的长,依据S△ACD= CDOC= ADCG,可求得CG的长,然后依据勾股定理可求得AG的长,从而可得到tan∠AED= = = ,从而可求得EF和E′F的长,然后求得点E和点E′的坐标即可;(4)先证明AB=BC,由等腰三角形的性质可知MB为AC的垂直平分线,然后再证明△CMP∽△F′MC,依据相似三角形的性质可求得MPMF′= ,最后由m=S1S2= ACPM ACMF′求解即可.
【考点精析】解答此题的关键在于理解锐角三角函数的定义的相关知识,掌握锐角A的正弦、余弦、正切、余切都叫做∠A的锐角三角函数.
科目:初中数学 来源: 题型:
【题目】两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB=∠DCE=90,F是DE的中点,H是AE的中点,G是BD的中点.
(1)如图1,若点D.E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为和位置关系为;
(2)将图1中三角板△DEC绕着点C顺时针(逆时针)旋转,旋转角为a(0°<a<180°)以图2和图3的情况为例,其中图2中旋转至点A、C、E在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若不成立,请说明理由;若成立,请从图2和图3中选其一证明
(3)在△DEC绕点C按图3方式旋转的过程中,当直线FH经过点C时,若AC=2,CD= ,请直接写出FG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了创建书香校园,切实引导学生多读书,读好书.某中学开展了“好书伴我成长”的读书节活动,为了了解本校学生每周课外阅读时间,随机抽取部分学生进行问卷调查,将课外阅读时间分为A、B、C、D四组,并利用臭氧所得的数据绘制了如下统计图.
组别 | 课外阅读t(单位:时) |
A | X<2 |
B | 2≤x<3 |
C | 3≤x<4 |
D | x≥4 |
请根据图中提供的信息,解答下列问题:
(1)一共调查了名学生;
(2)扇形统计图中A组的圆心角度数;
(3)直接补全条形统计图
(4)若该校有2400名学生,根据你所调查的结果,估计每周课外阅读时间不足3小时的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一张矩形纸片ABCD,AD=5cm,AB=3cm,将纸片沿ED折叠,A点刚好落在BC边上的A'处,如图,这时AE的长应该是( )
A. cm
B. cm
C. cm
D. cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】保护视力要求人写字时眼睛和笔端的距离应超过30cm,图1是一位同学的坐姿,把他的眼睛B,肘关节C和笔端A的位置关系抽象成图2的△ABC,已知BC=30cm,AC=22cm,∠ACB=53°,他的这种坐姿符合保护视力的要求吗?请说明理由.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与y轴交与点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.
(1)求抛物线的解析式;
(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;
(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com