【题目】如图1,直线SN与直线WE相交于点O,射线ON表示正北方向,射线OE表示正东方向,已知射线OB的方向是南偏东m°,射线OC的方向为北偏东n°,且m°的角与n°的角互余.
(1)①若m=60,写出射线OC的方向.(直接回答)
②请直接写出图中所有与∠BOE互余的角及与∠BOE互补的角.
(2)如图2,若射线OA是∠BON的平分线,
①若m=70,求∠AOC的度数.
②若m为任意角度,求∠AOC的度数.(结果用含m的式子表示)
【答案】(1)①北偏东30°;②与∠BOE互余的角有∠BOS,∠COE,与∠BOE互补的角有∠BOW,∠COS;(2)①35°;②∠AOC=m°.
【解析】
(1)①根据余角的定义求得n的值,然后根据方向角的定义即可解答;
②根据余角和补角的定义即可解答;
(2)①首先求得∠BON的度数,然后根据角平分线的定义求得∠AON,然后根据∠AOC=∠AON-∠CON即可求解;
②解法与①相同,把70°改成m°即可求求解.
(1)①北偏东30°,
解:n=90°﹣60°=30°,则射线OC的方向是:北偏东30°
②与∠BOE互余的角有∠BOS,∠COE,
与∠BOE互补的角有∠BOW,∠COS.
(2)①35°;
解:∠BON=180°﹣70°=110°,
∵OA是∠BON的平分线,
∴∠AON=∠BON=55°,
又∵∠CON=90°﹣70°=20°,
∴∠AOC=∠AON﹣∠CON=55°﹣20°=35°.
②∵∠BOS+∠BON=180°,
∴∠BOS=180°﹣∠BON=180°﹣m°.
∵OA是∠BON的平分线,
∴∠AON=∠BON=(180°﹣m°)=90°﹣m°.
∵∠BOS+∠CON=m°+n°=90°,
∴∠CON=90°﹣m°,
∴∠AOC=∠AON﹣∠CON=90°﹣m°﹣(90°﹣m°)=90°﹣m°﹣90°+m°=m°.
科目:初中数学 来源: 题型:
【题目】如图(1),在△ABC中,AD是BC边的中线,过A点作AE∥BC与过D点作DE∥AB交于点E,连接CE.
(1)求证:四边形ADCE是平行四边形.
(2)连接BE,AC分别与BE、DE交于点F、G,如图(2),若AC=6,求FG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等腰直角三角形,∠ACB=90°,AB=4cm,动点P以1cm/s的速度分别从点A、B同时出发,点P沿A→B向终点B运动,点Q沿B→A向终点A运动,过点P作PD⊥AC于点D,以PD为边向右侧作正方形PDEF,过点Q作QG⊥AB,交折线BC﹣CA于点G与点C不重合,以QG为边作等腰直角△QGH,且点G为直角顶点,点C、H始终在QG的同侧,设正方形PDEF与△QGH重叠部分图形的面积为S(cm2),点P运动的时间为t(s)(0<t<4).
(1)当点F在边QH上时,求t的值;
(2)当正方形PDEF与△QGH重叠部分图形是四边形时,求S与t之间的函数关系式;
(3)当FH所在的直线平行或垂直于AB时,直接写出t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在桌面上,有7个完全相同的小正方体堆成的一个几何体A,如图所示.
(1) 请画出这个几何体A的三视图.
(2) 若将此几何体的表面喷上红漆(放在桌面上的一面不喷),则三个面上是红色的小正方体有______个.
(3) 若现在你的手头还有一些相同的小正方体可添放在该几何体上,要保持俯视图和左视图不变,则最多可以添加_______个小正方体.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,OE平分∠AOC,OF平分∠BOC,且∠BOC=60°,若∠AOC+∠EOF=156°,则∠EOF的度数是( )
A. 88° B. 30° C. 32° D. 48°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】①在数轴上没有点能表示+1;②无理数是开不尽方的数;③存在最小的实数;④4的平方根是±2,用式子表示是=±2;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中正确的是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】盛盛同学到某高校游玩时,看到运动场的宣传栏中的部分信息(如下表):
院系篮球赛成绩公告 | |||
比赛场次 | 胜场 | 负场 | 积分 |
22 | 12 | 10 | 34 |
22 | 14 | 8 | 36 |
22 | 0 | 22 | 22 |
盛盛同学结合学习的知识设计了如下问题,请你帮忙完成下列问题:
(1)从表中可以看出,负一场积______分,胜一场积_______分;
(2)某队在比完22场的前提下,胜场总积分能等于其负场总积分的2倍吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延长线于点E.CE=2,延长CE,BA交于点F.
(1)求证:△ADB≌△AFC;
(2)求BD的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下图甲是任意一个直角三角形ABC,它的两条直角边的边长分别为a、b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为a+b的正方形内.
①图乙和图丙中(1)(2)(3)是否为正方形?为什么?
②图中(1)(2)(3)的面积分别是多少?
③图中(1)(2)的面积之和是多少?
④图中(1)(2)的面积之和与正方形(3)的面积有什么关系?为什么?
由此你能得到关于直角三角形三边长的关系吗?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com