【题目】如图,在平面直角坐标系中,四边形OABC为菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线l与菱形OABC的两边分别交于点M、N(点M在点N的上方).
(1)求A、B两点的坐标;
(2)设△OMN的面积为S,直线l运动时间为t秒(0≤t≤6),试求S与t的函数表达式;
(3)在题(2)的条件下,是否存在某一时刻,使得△OMN的面积与OABC的面积之比为3:4?如果存在,请求出t的取值;如果不存在,请说明理由.
【答案】(1)A(2,2),B(6,2);(2)S=t2;S=t;S=﹣t2+3t;(3)不存在,理由见解析;不存在某一时刻,使得△OMN的面积与OABC的面积之比为3:4.
【解析】
(1)根菱形性质得出OA=AB=BC=CO=4,过A作AD⊥OC于D,求出AD、OD,即可得出答案;
(2)有三种情况:①当0≤t≤2时,直线l与OA、OC两边相交,②当2<t≤4时,直线l与AB、OC两边相交,③当4<t≤6时,直线l与AB、BC两边相交,画出图形求出即可;
(3)分为以上三种情况,求出得到的方程的解,看看是否在所对应的范围内,即可进行判断.
解:(1)∵四边形OABC为菱形,点C的坐标是(4,0),
∴OA=AB=BC=CO=4,
过A作AD⊥OC于D,
∵∠AOC=60°,
∴OD=2,AD=,
∴A(2,),B(6,);
(2)直线l从y轴出发,沿x轴正方向运动与菱形OABC的两边相交有三种情况:①如图1,
当0≤t≤2时,直线l与OA、OC两边相交,
∵MN⊥OC,
∴ON=t,
∴MN=ONtan60°=t,
∴S=ONMN=t2;
②当2<t≤4时,直线l与AB、OC两边相交,如图2,
S=ONMN=×t×=t;
③当4<t≤6时,直线l与AB、BC两边相交,如图3,
设直线l与x轴交于H,
MN=,
∴S=MNOH=(t)t=;
(3)答:不存在,
理由是:假设存在某一时刻,使得△OMN的面积与OABC的面积之比为3:4,
菱形AOCB的面积是4×2=8,
①t2:8=3:4,
解得:t=±2,
∵0≤t≤2,
∴此时不符合题意舍去;
②t:8=3:4,
解得:t=6(舍去);
③():8=3:4,
此方程无解.
综合上述,不存在某一时刻,使得△OMN的面积与OABC的面积之比为3:4.
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,直线与轴交于点,与轴交于点,抛物线经过,两点,与轴的另一交点为点.
(1)求抛物线的函数表达式;
(2)点为直线下方抛物线上一动点.
①如图2所示,直线交线段于点,求的最小值;
② 如图3所示,连接过点作于,是否存在点,使得中的某个角恰好等于的2倍?若存在,求点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在学习函数时,我们经历了“确定函数的表达式利用函数图象研究其性质——运用函数解决问题“的学习过程,在画函数图象时,我们通过列表、描点、连线的方法画出了所学的函数图象
同时,我们也学习过绝对值的意义.
结合上面经历的学习过程,现在来解决下面的问题:
在函数y=|kx-1|+b中,当x=0时,y=-2;当x=1时,y=-3.
(1)求这个函数的表达式;
(2)在给出的平面直角坐标系中,请直接画出此函数的图象并写出这个函数的两条性质;
(3)在图中作出函数y=的图象,结合你所画的函数图象,直接写出不等式|kx-1|+b≤的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】初三(1)班针对“垃圾分类”知晓情况对全班学生进行专题调查活动,对“垃圾分类”的知晓情况分为、、、四类.其中,类表示“非常了解”,类表示“比较了解”,类表示“基本了解”,类表示“不太了解”,每名学生可根据自己的情况任选其中一类,班长根据调查结果进行了统计,并绘制成了不完整的条形统计图和扇形统计图.
“垃圾分类”知晓情况各类别人数条形统计图 “垃圾分类”知晓情况各类别人数扇形统计图
根据以上信息解决下列问题:
(1)初三(1)班参加这次调查的学生有______人,扇形统计图中类别所对应扇形的圆心角度数为______°;
(2)求出类别的学生数,并补全条形统计图;
(3)类别的4名学生中有2名男生和2名女生,现从这4名学生中随机选取2名学生参加学校“垃圾分类”知识竞赛,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是平行四边形,
(1)请用尺规作图法,作∠B的平分线,交AD于点E;(不要求写作法,保留作图痕迹)
(2) 若平行四边形ABCD的周长为10,CD=2,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】龙虾狂欢季再度开启,第届中国合肥龙虾节的主题是“让你知虾,也知稻”,稻田小龙虾养殖技术在合肥周边的乡镇大力推广,已知每千克小龙虾养殖成本为元,在整个销售旺季的天里,销售单价元/千克,与时间(天)之间的函数关系式为:,日销售量(千克)与时间第(天)之间的函数关系如图所示:
(1)求日销售量与时间的函数关系式?
(2)哪一天的日销售利润最大?最大利润是多少?
(3)在实际销售的前天中,该养殖户决定销售千克小龙虾,就捐赠元给村里的特困户,在这前天中,每天扣除捐赠后的日销售利润随时间的增大而增大,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校对九年一班50名学生进行长跑项目的测试,根据测试成绩制作了两个统计图.
请根据相关信息,解答下列问题:
(1)本次测试的学生中,得3分的学生有________人,得4分的学生有________人;
(2)求这50个数据的平均数、众数和中位数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=4,BC=3,点P是边AB上的一动点,连接DP,
(1)若将△DAP沿DP折叠,点A落在矩形的对角线上点A处,试求AP的长;
(2)点P运动到某一时刻,过点P作直线PE交BC于点E,将△DAP与△PBE分别沿DP与PE折叠,点A与点B分别落在点A,B处,若P,A,B三点恰好在同一直线上,且AB=2,试求此时AP的长.
(3)当点P运动到边AB的中点处时,过点P作直线PG交BC于点G,将△DAP与△PBG分别沿DP与PG折叠,点A与点B重合于点F处,请直接写出F到BC的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:有一个内角为90°,且对角线相等的四边形称为准矩形.
(1)①如图1,准矩形ABCD中,∠ABC=90°,若AB=2,BC=3,则BD= ;
②如图2,直角坐标系中,A(0,3),B(5,0),若整点P使得四边形AOBP是准矩形,则点P的坐标是 ;(整点指横坐标、纵坐标都为整数的点)
(2)如图3,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;
(3)已知,准矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,当△ADC为等腰三角形时,请直接写出这个准矩形的面积是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com