【题目】 如图1,已知水龙头喷水的初始速度v0可以分解为横向初始速度vx和纵向初始速度vy,θ是水龙头的仰角,且v02=vx2+vy2.图2是一个建在斜坡上的花圃场地的截面示意图,水龙头的喷射点A在山坡的坡顶上(喷射点离地面高度忽略不计),坡顶的铅直高度OA为15米,山坡的坡比为.离开水龙头后的水(看成点)获得初始速度v0米/秒后的运动路径可以看作是抛物线,点M是运动过程中的某一位置.忽略空气阻力,实验表明:M与A的高度之差d(米)与喷出时间t(秒)的关系为d=vyt-5t2;M与A的水平距离为vxt米.已知该水流的初始速度v0为15米/秒,水龙头的仰角θ为53°.
(1)求水流的横向初始速度vx和纵向初始速度vy;
(2)用含t的代数式表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围);
(3)水流在山坡上的落点C离喷射点A的水平距离是多少米?若要使水流恰好喷射到坡脚B处的小树,在相同仰角下,则需要把喷射点A沿坡面AB方向移动多少米?(参考数据:sin53°≈,cos53°≈,tan53°≈)
【答案】(1)水流的横向初始速度vx是9米/秒,纵向初始速度vy是12米/秒;(2)y=-+x+15;(3)水流在山坡上的落点C离喷射点A的水平距离是27米,需要把喷射点A沿坡面AB方向移动米
【解析】
(1)根据题意利用θ的正弦和余弦定义可得结论;
(2)由(1)的表示出vx表示出x,OA已知,利用y=d+OA,代入OA的值和d与t的函数关系式,可以得解;
(3)先求得点A和点B的坐标,进而写出其直线解析式,再将其与(2)中抛物线解析式联立,从而求得落点C的坐标,再利用平移知识及勾股定理可以求解.
解:(1)∵v0为15米/秒,水龙头的仰角θ为53°,
∴cosθ=,sinθ=,
∴vx=15cos53°=15×=9,vy=15sin53°=15×=12;
答:水流的横向初始速度vx是9米/秒,纵向初始速度vy是12米/秒;
(2)x=vxt=9t,
∴t=,
又M与A的高度之差d(米)与喷出时间t(秒)的关系为d=vyt-5t2
∴y=d+OA=12t-5t2+15=-5×+12×+15=-+x+15;
∴y与x的关系式为:y=-+x+15.
(3)∵坡顶的铅直高度OA为15米,山坡的坡比为,
∴OB=45米,点A(0,15)点B(45,0)
∴直线AB的解析式为:y=+15,将其与抛物线解析式联立得:,
解得(舍)或,
∴水流在山坡上的落点C坐标为(27,6),喷射点A沿坡面AB方向移动的距离等于BC的距离,
而BC==米,
答:水流在山坡上的落点C离喷射点A的水平距离是27米,需要把喷射点A沿坡面AB方向移动米.
科目:初中数学 来源: 题型:
【题目】某公司的午餐采用自助的形式,并倡导员工“适度取餐,减少浪费”该公司共有10个部门,且各部门的人数相同.为了解午餐的浪费情况,从这10个部门中随机抽取了两个部门,进行了连续四周(20个工作日)的调查,得到这两个部门每天午餐浪费饭菜的重量,以下简称“每日餐余重量”(单位:千克),并对这些数据进行了整理、描述和分析.下面给出了部分信息..部门每日餐余重量的频数分布直方图如下(数据分成6组:,,,):
.部门每日餐余重量在这一组的是:6.1 6.6 7.0 7.0 7.0 7.8
.部门每日餐余重量如下:1.4 2.8 6.9 7.8 1.9 9.7 3.1 4.6 6.9 10.8 6.9 2.6 7.5 6.9 9.5 7.8 8.4 8.3 9.4 8.8
. 两个部门这20个工作日每日餐余重量的平均数、中位数、众数如下:
部门 | 平均数 | 中位数 | 众数 |
| 6.4 |
| 7.0 |
| 6.6 | 7.2 |
|
根据以上信息,回答下列问题:
(1)写出表中的值;
(2)在这两个部门中,“适度取餐,减少浪费”做得较好的部门是________(填“”或“”),理由是____________;
(3)结合这两个部门每日餐余重量的数据,估计该公司(10个部门)一年(按240个工作日计算)的餐余总重量.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有甲,乙两种机器人都被用来搬运某体育馆室内装潢材料甲型机器人比乙型机器人每小时少搬运30千克,甲型机器人搬运600千克所用的时间与乙型机器人搬运800千克所用的时间相同,两种机器人每小时分别搬运多少千克?设甲型机器人每小时搬运x千克,根据题意,可列方程为( )
A. =B. =
C. =D. =
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 随着互联网、移动终端的迅速发展,数字化阅读越来越普及. 公交、地铁上的“低头族”越来越多,某研究机构针对“您如何看待数字化阅读”问题进行了随机问卷调查(问卷训查表如下图所示),并将调查结果绘制成图①和图②所示的统计图(均不完整).
“您如何看待教化阅读”问卷调查表
您好!这是一份关于“您如何看待数字化间读问调查表,请在表格中选择一项您最认观点,在其后空格内打“√”,非常感谢您的合作.
随着互联网、移动终端的迅速发展,数字化阅读越来越普及. 公交、地铁上的“低头族”越来越多,某研究机构针对“您如何看待数字化阅读”问题进行了随机问卷调查(问卷训查表如下图所示),并将调查结果绘制成图①和图②所示的统计图(均不完整).
“您如何看待教化阅读”问卷调查表
您好!这是一份关于“您如何看待数字化间读”问调查表,请在表格中选择一项您最认观点,在其后空格内打“√”,非常感谢您的合作.
请根据统计图中提供的信息,解答下列问题:
(1)本次接受词查的总人数是______人,并将条形统计图补充完整;
(2)在扇形统计图中,观点E的百分比是_______,表示观点B的扇形的圆心角度数为______度.
(3)某市共有300万人,请根据以上调查结果估算该市持观点赞成数字化阅读的人数共有多少万人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】春晓中学为开展“校园科技节”活动,计划购买A型、B型两种型号的航模.若购买8个A型航模和5个B型航模需用2200元;若购买4个A型航模和6个B型航模需用1520元.求A,B两种型号航模的单价分别是多少元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市某蔬菜种植农户购买白菜苗和西红柿苗共1000株,其中白菜苗每株3元,西红柿苗每株5元.已知该农户打算用不少于3600元但不多于3800元的资金购买两种蔬菜.
(1)求该农户可以购买白菜苗株数的最大值和最小值;
(2)该农户按(1)中购买白菜苗株数的最小值的方案购买两种蔬菜苗,经过农户的精心培育,两种蔬菜苗全成活.根据以往的数据分析,平均一株白菜苗可长成2千克白菜,平均一株西红柿苗可结3千克西红柿.农户计划采用直接销售和生态采摘销售两种方式进行销售,其中直接销售白菜的售价为每千克4元,直接销售西红柿的售价为每千克5元;生态采摘销售时两种蔬菜的售价一样,都比直接销售白菜的售价高,但生态采摘过程中会有的损耗.当白菜和西红柿各直接销售一半后、剩下的全部采用生态采摘销售时,该农户可获得8080元的利润.求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx与x轴交于点A,顶点B的坐标为(﹣2,﹣2).
(1)求a,b的值;
(2)在y轴正半轴上取点C(0,4),在点A左侧抛物线上有一点P,连接PB交x轴于点D,连接CB交x轴于点F,当CB平分∠DCO时,求点P的坐标;
(3)在(2)的条件下,连接PC,在PB上有一点E,连接EC,若∠ECB=∠PDC,求点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线的顶点D的坐标为(﹣1,4),抛物线与x轴相交于A.B两点(A在B的左侧),与y轴交于点C(0,3).
(1)求抛物线的表达式;
(2)如图1,已知点E(0,﹣3),在抛物线的对称轴上是否存在一点F,使得△CEF的周长最小,如果存在,求出点F的坐标;如果不存在,请说明理由;
(3)如图2,连接AD,若点P是线段OC上的一动点,过点P作线段AD的垂线,在第二象限分别与抛物线、线段AD相交于点M、N,当MN最大时,求△POM的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把矩形ABCD沿EF,GH折叠,使点B,C落在AD上同一点P处,∠FPG=90°,△A′EP的面积是8,△D′PH的面积是4,则矩形ABCD的面积等于_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com