精英家教网 > 初中数学 > 题目详情

【题目】如图,在RtABC中,∠ACB=90°,AB=5,AC=3,DBC上一动点,连接AD,将ACD沿AD折叠,点C落在点C'处,连接C'DAB于点E,连接BC',当BC'D是直角三角形时,DE的长为_________.

【答案】

【解析】试题分析:如图1所示;点E与点C′重合时.在RtABC中,BC==4.由翻折的性质可知;AE=AC=3DC=DE.则EB=2.设DC=ED=x,则BD=4﹣x.在RtDBE中,DE2+BE2=DB2,即x2+22=4﹣x2.解得:x=DE=.如图2所示:EDB=90时.由翻折的性质可知:AC=AC′C=C′=90°∵∠C=C′=CDC′=90°四边形ACDC′为矩形.又AC=AC′四边形ACDC′为正方形.CD=AC=3DB=BC﹣DC=4﹣3=1DEAC∴△BDE∽△BCA,即.解得:DE=.点DCB上运动,DBC′90°,故DBC′不可能为直角.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,CD切⊙O于点C,与BA的延长线交于点D,OEAB交⊙O于点E,连接CA、CE、CB,CEAB于点G,过点AAFCE于点F,延长AFBC于点P.

(Ⅰ)求∠CPA的度数;

(Ⅱ)连接OF,若AC=D=30°,求线段OF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).

(1)画出ABC向下平移4个单位长度得到的A1B1C1,点C1的坐标是   

(2)以点B为位似中心,在网格内画出A2B2C2,使A2B2C2ABC位似,且位似比为2:1;

(3)四边形AA2C2C的面积是   平方单位.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,yx的增大而增大,且2≤x≤1时,y的最大值为9,则a的值为

A. 12 B.

C. D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为提倡绿色出行,某公司在我区两个街区分别投放了一批共享汽车共享汽车有甲、乙不同款型.

1)该公司在我区街区早期试点时共投放甲、乙两种型号的共享汽车20辆,投放成本共计划110万,其中甲型汽车的成本单价比乙型汽车少0.5万元,求甲、乙两型共享汽车的单价各是多少?

2)该公司采取了如下的投放方式: 街区每2000人投放共享汽车街区每2000人投放共享汽车,按照这种设放方式,街区共投放150辆,街区共投放120辆,如果两个街区共有6万人,试求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,建筑物AB的高为6cm,在其正东方向有个通信塔CD,在它们之间的地面点M(B,M,D三点在一条直线上)处测得建筑物顶端A、塔项C的仰角分别为37°60°,在A处测得塔顶C的仰角为30°,则通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73,精确到0.1m)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知的直径,分别与圆相交于,那么下列等式中一定成立的是(

A. AEBF=AFCF B. AEAB=AOAD'

C. AEAB=AFAC D. AEAF=AOAD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,.

1)请画出关于轴对称的(其中分别是的对应点)并直接写出点的坐标为 .

2)若直线经过点且与轴平行,则点关于直线的对称点的坐标为 .

3)在轴上存在一点,使最大,则点的坐标为 .

4)第一象限有一点,在轴上找一点使最短,画出最短路径,保留作图迹.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2011山东济南,279分)如图,矩形OABC中,点O为原点,点A的坐标为(08),点C的坐标为(60).抛物线经过AC两点,与AB边交于点D

1)求抛物线的函数表达式;

2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m△CPQ的面积为S

S关于m的函数表达式,并求出m为何值时,S取得最大值;

S最大时,在抛物线的对称轴l上若存在点F,使△FDQ为直角三角形,请直接写出所有符合条件的F的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案