【题目】某班“数学兴趣小组”对函数的图像和性质进行了探究,探究过程如下,请补充完整.
(1)自变量的取值范围是全体实数,与的几组对应值列表如下:
… | 0 | 1 | 2 | 3 | 4 | … | |||||
… | 3 | 0 | 0 | 3 | … |
其中,=____________.
(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图像的一部分,请画出该图像的另一部分.
(3)观察函数图像,写出两条函数的性质:
(4)进一步探究函数图像发现:
①函数图像与轴有__________个交点,所以对应方程有___________个实数根;
②方程有___________个实数根;
③关于的方程有4个实数根,的取值范围是_______________________
【答案】(1)0;(2)图见解析;(3)答案不唯一,合理即可;(4)①3,3;②2;③-1<a<0.
【解析】
试题分析:(1)观察表格,根据对称性即可得m=0;(2)根据表格描点,画出图象即可;(3)观察图象,写出函数的两条性质即可,可从函数的最值,增减性,图象的对称性等方面阐述,答案不唯一,合理即可;(4)①观察函数图像可得函数图像与轴有3个交点,所以对应方程有3个实数根;②由图象可知,函数图像与直线y=2有两个交点,所以方程有2个实数根;③方程有4个实数根,说明函数的图象与直线y=a有4个交点,由此可得的取值范围是-1<a<0.
试题解析:(1)0;
(2)(正确补全图象);
(3)(可从函数的最值,增减性,图象的对称性等方面阐述,答案不唯一,合理即可);
(4)①3,3;②2;③-1<a<0.
科目:初中数学 来源: 题型:
【题目】如图,直线l:y=-x,点A1坐标为(-3,0). 过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A3,…,按此做法进行下去,点A2016的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若抛物线L:y=ax2+bx+c(a,b,c是常数,abc≠0)与直线l都经过y轴上的一点P,且抛物线L的顶点Q在直线l上,则称此直线l与该抛物线L具有“一带一路”关系.此时,直线l叫做抛物线L的“带线”,抛物线L叫做直线l的“路线”.
(1)若直线y=mx+1与抛物线y=x2﹣2x+n具有“一带一路”关系,求m,n的值;
(2)若某“路线”L的顶点在反比例函数y=的图象上,它的“带线”l的解析式为y=2x﹣4,求此“路线”L的解析式;
(3)当常数k满足≤k≤2时,求抛物线L:y=ax2+(3k2﹣2k+1)x+k的“带线”l与x轴,y轴所围成的三角形面积的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD的角平分线,
(1)求∠DEC的度数。
(2)直接写出图中所有的等腰三角形。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com