【题目】已知,点O到△ABC的两边AB、AC所在直线的距离相等,且OB=OC.
(1)如图1,若点O在BC上,求证:△ABC是等腰三角形.
(2)如图2,若点O在△ABC内部,求证:AB=AC.
(3)若点O点在△ABC的外部,△ABC是等腰三角形还成立吗?请画图表示.
【答案】(1)证明见解析;(2)证明见解析;(3)若O点在△ABC的外部,AB=AC不一定成立;图形见解析.
【解析】
(1)首先过点O作OD⊥AB于D,作OE⊥AC于E,易证得Rt△BOD≌Rt△COE,即可得∠B=∠C,根据等角对等边的性质,即可得证;
(2)首先过点O作OD⊥AB于D,作OE⊥AC于E,易证得Rt△BOD≌Rt△COE,然后又由OB=OC,根据等边对等角的性质,易证得∠ABC=∠ACB,根据等角对等边的性质,AB=AC;
(3)首先过点O作OD⊥AB于D,作OE⊥AC的延长线于点E,易证得Rt△BOD≌Rt△COE,然后又由OB=OC,根据等边对等角的性质,易证得∠ABC=∠ACB,根据等角对等边的性质,AB=AC.
(1)证明:如图1,
过O作OE⊥AB于E,OF⊥AC于F,
则∠OEB=∠OFC=90°,
∵点O到△ABC的两边AB、AC所在直线的距离相等,
∴OE=OF,
在Rt△OEB和Rt△OFC中,
,
∴Rt△OEB≌Rt△OFC(HL),
∴∠ABC=∠ACB,
∴AB=AC;
(2)证明:如图2,过O作OE⊥AB于E,OF⊥AC于F,
则∠OEB=∠OFC=90°,
∵点O到△ABC的两边AB、AC所在直线的距离相等,
∴OE=OF,
在Rt△OEB和Rt△OFC中,
,
∴Rt△OEB≌Rt△OFC(HL),
∴∠ABO=∠ACO,
∵∠OBC=∠OCB,
∴∠ABC=∠ACB,
∴AB=AC;
(3)解:若O点在△ABC的外部,AB=AC不一定成立,
理由是:①当∠A的平分线和BC的垂直平分线重合时,如图3,
过O作OE⊥AB交AB的延长线于E,OF⊥AC交AC的延长线于F,
则∠OEB=∠OFC=90°,
∵点O到△ABC的两边AB、AC所在直线的距离相等,
∴OE=OF,
在Rt△OEB和Rt△OFC中
∴Rt△OEB≌Rt△OFC(HL),
∴∠EBO=∠FCO,
∵OB=OC,
∴∠OBC=∠OCB,
∵∠ABC=180°﹣(∠OBC+∠EBO),∠ACB=180°﹣(∠OCB+∠FCO),
∴∠ABC=∠ACB,
∴AB=AC;
②当∠A的平分线和BC的垂直平分线不重合时,如图④,
此时∠ABC和∠ACB不相等,
∴AB≠AC,
∴△ABC是等腰三角形不一定成立.
科目:初中数学 来源: 题型:
【题目】如图,△ABC在直角坐标系中,
(1)请写出△ABC各顶点的坐标;
(2)若把△ABC向上平移2个单位,再向左平移1个单位得到△A′B′C′,写出A′、B′、C′的坐标,并在图中画出平移后图形;
(3)求出△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠BAC=120°,AD平分∠BAC,且AD=AB,若∠EDF=60°,其两边分别交边AB,AC于点E,F.
(1)求证:△ABD是等边三角形;
(2)求证:BE=AF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系中,为坐标原点,点的坐标为,点的坐标为,点的坐标为,其中满足方程组.
(1)若点到轴的距离为6,则的值为_________;
(2)连接,线段沿轴方向向上平移到线段,则点到直线的距离为_______,线段扫过的面积为15,则点平移后对应点的纵坐标为_______;
(3)连接,,,若的面积小于等于12,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一副直角三角尺(即直角三角形AOB和直角三角形COD)的直角顶点O的重合,其中,在△AOB中,∠A=60°,∠B=30°,∠AOB=90°;在△COD中,∠C=∠D=45°,∠COD=90°.
(1)如图1,当OA在∠COD的外部,且∠AOC=45°时,①试说明CO平分∠AOB; ②试说明OA∥CD(要求书写过程);
(2)如图2,绕点O旋转直角三角尺AOB,使OA在∠COD的内部,且CD∥OB,试探索∠AOC=45°是否成立,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,长方形OABC的边OC、OA分别在x轴、y轴上,B点在第一象限,点A的坐标是(0,4),OC=8.
(1)直接写出点B、C的坐标;
(2)点P从原点O出发,在边OC上以每秒1个单位长度的速度匀速向C点移动,同时点Q从点B出发,在边BA上以每秒2个单位长度的速度匀速向A点移动,当一个点到达终点时,另一个点随之停止移动,设移动的时间为t秒钟,探究下列问题:
① 当t值为多少时,直线PQ∥y轴?
② 在整个运动过程中,能否使得四边形BCPQ的面积是长方形OABC的面积的?若能,请直接写出P、Q两点的坐标;若不能,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于二次函数y=x2﹣2mx﹣3,下列结论错误的是( )
A.它的图象与x轴有两个交点
B.方程x2﹣2mx=3的两根之积为﹣3
C.它的图象的对称轴在y轴的右侧
D.x<m时,y随x的增大而减小
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)求出△ABC的面积;
(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;
(3)写出点A1,B1,C1的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com