【题目】如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在边OA上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.
(1)求OE的长及经过O,D,C三点抛物线的解析式;
(2)一动点P从点C出发,沿CB以每秒2个单位长度的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长度的速度向点C运动,当点P到达点B时,两点同时停止运动,设运动时间为t秒,当t为何值时,DP=DQ;
(3)若点N在(1)中抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点坐标;若不存在,请说明理由.
【答案】(1)OE=3;y=x2+x;(2)t=;(3)存在满足条件的点M,其坐标为(2,16)或(﹣6,16)或(﹣2,﹣).
【解析】
(1)由折叠的性质可求得CE、CO,在Rt△COE中,由勾股定理可求得OE,设AD=m,在Rt△ADE中,由勾股定理可求得m的值,可求得D点坐标,结合C、O两点,利用待定系数法可求得抛物线解析式;
(2)用t表示出CP、BP的长,可证明△DBP≌△DEQ,可得到BP=EQ,可求得t的值;
(3)可设出N点坐标,分三种情况①EN为对角线,②EM为对角线,③EC为对角线,根据平行四边形的性质可求得对角线的交点横坐标,从而可求得M点的横坐标,再代入抛物线解析式可求得M点的坐标.
(1)∵CE=CB=5,CO=AB=4,
∴在Rt△COE中,OE===3,
设AD=m,则DE=BD=4﹣m,
∵OE=3,
∴AE=5﹣3=2,
在Rt△ADE中,由勾股定理可得AD2+AE2=DE2,即m2+22=(4﹣m)2,解得m=,
∴D(﹣,﹣5),
∵C(﹣4,0),O(0,0),
∴设过O、D、C三点的抛物线为y=ax(x+4),
∴﹣5=﹣a(﹣+4),解得a=,
∴抛物线解析式为y=x(x+4)=x2+x;
(2)∵CP=2t,
∴BP=5﹣2t,
∵BD=,DE==,
∴BD=DE,
在Rt△DBP和Rt△DEQ中,
,
∴Rt△DBP≌Rt△DEQ(HL),
∴BP=EQ,
∴5﹣2t=t,
∴t=;
(3)∵抛物线的对称轴为直线x=﹣2,
∴设N(﹣2,n),
又由题意可知C(﹣4,0),E(0,﹣3),
设M(m,y),
①当EN为对角线,即四边形ECNM是平行四边形时,
则线段EN的中点横坐标为,线段CM中点横坐标为,
∵EN,CM互相平分,
∴=﹣1,解得m=2,
又M点在抛物线上,
∴y=×22+×2=16,
∴M(2,16);
②当EM为对角线,即四边形ECMN是平行四边形时,
则线段EM的中点横坐标为,线段CN中点横坐标为,
∵EM,CN互相平分,
∴=﹣3,解得m=﹣6,
又∵M点在抛物线上,
∴y=×(﹣6)2+×(﹣6)=16,
∴M(﹣6,16);
③当CE为对角线,即四边形EMCN是平行四边形时,
则M为抛物线的顶点,即M(﹣2,﹣).
综上可知,存在满足条件的点M,其坐标为(2,16)或(﹣6,16)或(﹣2,﹣).
科目:初中数学 来源: 题型:
【题目】(2017江西省,第12题,3分)已知点A(0,4),B(7,0),C(7,4),连接AC,BC得到矩形AOBC,点D的边AC上,将边OA沿OD折叠,点A的对应边为A'.若点A'到矩形较长两对边的距离之比为1:3,则点A'的坐标为______________________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,连结AC,现有一宽度为1,且长与y轴平行的矩形沿x轴方向平移,交直线AC于点D和E,△ODE周长的最小值为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC、BC于点D、E,BC的延长线于⊙O的切线AF交于点F.
(1)求证:∠ABC=2∠CAF;
(2)若AC=2,CE:EB=1:4,求CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字,,,,如图,正方形顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从图起跳,第一次掷得,就顺时针连续跳个边长,落到圈;若第二次掷得,就从开始顺时针连续跳个边长,落到圈;设游戏者从圈起跳.
()嘉嘉随机掷一次骰子,求落回到圈的概率.
()淇淇随机掷两次骰子,用列表法求最后落回到圈的概率,并指出她与嘉嘉落回到圈的可能性一样吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某小区号楼对外销售,已知号楼某单元共层,一楼为商铺,只租不售,二楼以上价格如下:第层售价为元/米,从第层起每上升一层,每平方米的售价提高元,反之每降一层,每平方米的售价降低元,已知该单元每套的面积均为米
优惠活动
活动一:若一次性付清所有房款,降价,另免年物业费共元.
活动二:若购买者一次性付清所有房款,降价,无赠送.
(1)请在下表中,补充完整售价(元/米)与楼层(取正整数)之间的的数关系式.
楼层(层) | 楼 | 楼 | ||
售价(元/米) | 不售 |
(2)某客户想购买该单元第层的一套楼房,若他一次性付清购房款,可以参加如图优惠活动.请你帮助他分析哪种优惠方案更合算
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】程序框图的算法思路源于我国古代数学名著《九章算术》,如图所示的程序框图,当输入x的值是17时,根据程序,第一次计算输出的结果是10,第二次计算输出的结果是5,……,这样下去第2019次计算输出的结果是( )
A.-2B.-1C.-8D.-4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,经过原点的抛物线与轴交于另一点,在第一象限内与直线交于点.
(1)求这条抛物线的解析式;
(2)在第四象限内的抛物线上有一点,满足以,,为顶点的三角形的面积为1,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年12月以来,湖北省武汉市部分医院陆续发现不明原因肺炎病例,现已证实该肺炎为一种新型冠状病毒感染的肺炎,其传染性较强.为了有效地避免交叉感染,需要采取以下防护措施:①戴口罩;②勤洗手;③少出门;④重隔离;⑤捂口鼻;⑥谨慎吃.某公司为了解员工对防护措施的了解程度(包括不了解、了解很少、基本了解和很了解),通过网上问卷调查的方式进行了随机抽样调查(每名员工必须且只能选择一项),并将调查结果绘制成如下两幅统计图.
请你根据上面的信息,解答下列问题
(1)本次共调查了_______名员工,条形统计图中________;
(2)若该公司共有员工1000名,请你估计不了解防护措施的人数;
(3)在调查中,发现有4名员工对防护措施很了解,其中有3名男员工、1名女员工.若准备从他们中随机抽取2名,让其在公司群内普及防护措施,求恰好抽中一男一女的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com