【题目】如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC、BC于点D、E,BC的延长线于⊙O的切线AF交于点F.
(1)求证:∠ABC=2∠CAF;
(2)若AC=2,CE:EB=1:4,求CE的长.
【答案】(1)见解析;(2)CE=2.
【解析】
(1)首先连接BD,由AB为直径,可得∠ADB=90°,又由AF是⊙O的切线,易证得∠CAF=∠ABD.然后由BA=BC,证得:∠ABC=2∠CAF;
(2)首先连接AE,设CE=x,由勾股定理可得方程:(2)2=x2+(3x)2求得答案.
(1)证明:如图,连接BD.
∵AB为⊙O的直径,
∴∠ADB=90°,
∴∠DAB+∠ABD=90°.
∵AF是⊙O的切线,
∴∠FAB=90°,
即∠DAB+∠CAF=90°.
∴∠CAF=∠ABD.
∵BA=BC,∠ADB=90°,
∴∠ABC=2∠ABD.
∴∠ABC=2∠CAF.
(2)解:如图,连接AE,
∴∠AEB=90°,
设CE=x,
∵CE:EB=1:4,
∴EB=4x,BA=BC=5x,AE=3x,
在Rt△ACE中,AC2=CE2+AE2,
即(2)2=x2+(3x)2,
∴x=2.
∴CE=2.
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,抛物线与轴交于、两点(点在点的左侧),与轴交于点.对称轴为直线,点在抛物线上.
(1)如图1,为直线下方抛物线上的一点,连接、.当的面积最大时,在直线上取一点,过作轴的垂线,垂足为点,连接,.若时,求的值;
(2)将抛物线沿轴正方向平移得到新抛物线,经过原点.与轴的另一个交点为.设是抛物线上任意一点,点在直线上,能否成为以点为直角顶点的等腰直角三角形?若能、直接写出点的坐标,若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知抛物线y=x2+mx+m﹣1的顶点为D,交y轴于C点,交x轴于A(x1,0),B(x2,0)两点,点A在y轴左边,点B在y轴右边,且AB=4.
(1)求抛物线的解析式;
(2)如图1,AP⊥AD交抛物线于P.求点P的坐标;
(3)如图2,点H为B,D之间抛物线上一点,直线CH交BD于E,交x轴于F,若S△CDE=S△BEF,求H点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1中, ,点从点出发以的速度沿折线运动,点从点出发以的速度沿运动,两点同时出发,当某一点运动到点时,两点同时停止运动.设运动时间为,的面积为),关于的函数图象由两段组成,如图2所示,有下列结论:①;②:③图象段的函数表达式为;④面积的最大值为8,其中正确的个数有( )个
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.
(1)求a的值和直线AB的函数表达式;
(2)设△PMN的周长为C1,△AEN的周长为C2,若,求m的值;
(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接AE′、BE′,求AE′+BE′的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.
(1)求该种水果每次降价的百分率;
(2)从第一次降价的第1天算起,第天(为整数)的售价、销量及储存和损耗费用的相关信息如表所示.
时间(天) | ||
售价(元/斤) | 第1次降价后的价格 | 第2次降价后的价格 |
销量(斤) | ||
储存和损耗费用(元) |
已知该种水果的进价为4.1元/斤,设销售该水果第(天)的利润为(元),求与()之间的函数解析式,并求出第几天时销售利润最大.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象与反比例函数的图象相交于 A,B 两点,与 x 轴相交于点 C.已知 tan∠BOC=,点 B 的坐标为(m,n).
(1)求反比例函数的解析式;
(2)求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:将函数C1的图象绕点P(m,0)旋转180°,得到新的函数C2的图象,我们称函数C2是函数C1关于点P的相关函数。例如:当m=1时,函数y=(x-3)2+9关于点P(1,0)的相关函数为y=-(x+1)2-9.
(1)当m=0时,
①一次函数y=-x+7关于点P的相关函数为_______;
②点A(5,-6)在二次函数y=ax2-2ax+a(a≠0)关于点P的相关函数的图象上,求a的值;
(2)函数y=(x-2)2+6关于点P的相关函数是y= -(x-10)2-6,则m=_______
(3)当m-1≤x≤m+2时,函数y=x2-6mx+4m2关于点P(m,0)的相关函数的最大值为8,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,∠B=60°,点P是△ACD内一点,连接PA、PC、PD,若PA=5,PD=12,PC=13,则ACBD=_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com