【题目】如图,在菱形ABCD中,∠B=60°,点P是△ACD内一点,连接PA、PC、PD,若PA=5,PD=12,PC=13,则ACBD=_____.
【答案】180+169.
【解析】
将线段AP绕点A顺时针旋转60°得到线段AP′,连接PP′,想办法证明∠APE=30°,利用勾股定理求出AB的平方即可解决问题.
将线段AP绕点A顺时针旋转60°得到线段AP′,连接PP′,作AE⊥BP交BP延长于E.
∵四边形ABCD是菱形,
∴AB=BC,
∵∠ABC=60°,
∴△ABC是等边三角形,
∴AB=BC=AC,
∵AP′=AP,∠P′AP=60°,
∴△AP′P是等边三角形,
∴AP′=AP=PP′=5,
∵∠P′AP=∠BAC,
∴∠P′AB=∠PAC,
∴△P′AB≌△PAC(SAS),
∴BP′=PC=13,
∵P′P2+PB2=52+122=169,P′B2=132=169,
∴P′P2+PB2=P′B2,
∴∠P′PB=90°,
∵∠APP′=60°,
∴∠APB=150°,∠APE=180°﹣150°=30°,
在Rt△APE中,AP=5,∠APE=30°,
∴AE=AP=,PE=cos30°×AP=,
∴AB2=AE2+BE2=()2+(12+)2=169+60,
∴S△ABC=×ABAB=45+,
又∵S菱形ABCD=2S△ABC=ACBD,
∴ACBD=4S△ABC=180+169,
故答案为:180+169.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC、BC于点D、E,BC的延长线于⊙O的切线AF交于点F.
(1)求证:∠ABC=2∠CAF;
(2)若AC=2,CE:EB=1:4,求CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D、E分别是AB、AC的中点,若△ABC的面积为S△ABC=36cm2,则梯形EDBC的面积SEDBC为( )
A.9B.18C.27D.30
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是半圆弧上一动点,连接AP,作∠APC=45°,交弦AB于点C.AB=6cm.小元根据学习函数的经验,分别对线段AP,PC,AC的长度进行了测量.下面是小元的探究过程,请补充完整:
(1)下表是点P是上的不同位置,画图、测量,得到线段AP,PC,AC长度的几组值,如下表:
①经测量m的值是(保留一位小数).
②在AP,PC,AC的长度这三个量中,确定 的长度是自变量, 的长度和的长度都是这个自变量的函数;
(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数图象;
(3)结合函数图象,解决问题:当△ACP为等腰三角形时,AP的长度约为 cm(保留一位小数).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读对学生的成长有着深远的影响,某中学为了解学生每周课余阅读的时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表.
组别 | 时间(小时) | 频数(人数) | 频率 |
A | 0≤t≤0.5 | 6 | 0.15 |
B | 0.5≤t≤1 | a | 0.3 |
C | 1≤t≤1.5 | 10 | 0.25 |
D | 1.5≤t≤2 | 8 | b |
E | 2≤t≤2.5 | 4 | 0.1 |
合计 | 1 |
请根据图表中的信息,解答下列问题:
(1)表中的a= ,b= ,中位数落在 组,将频数分布直方图补全;
(2)估计该校2000名学生中,每周课余阅读时间不足0.5小时的学生大约有多少名?
(3)E组的4人中,有1名男生和3名女生,该校计划在E组学生中随机选出两人向全校同学作读书心得报告,请用画树状图或列表法求抽取的两名学生刚好是1名男生和1名女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了丰富校园文化生活,提高学生的综合素质,促进中学生全面发展,学校开展了多种社团活动.小明喜欢的社团有:合唱社团、足球社团、书法社团、科技社团(分别用字母A,B,C,D依次表示这四个社团),并把这四个字母分别写在四张完全相同的不透明的卡片的正面上,然后将这四张卡片背面朝上洗匀后放在桌面上.
(1)小明从中随机抽取一张卡片是足球社团B的概率是 .
(2)小明先从中随机抽取一张卡片,记录下卡片上的字母后不放回,再从剩余的卡片中随机抽取一张卡片,记录下卡片上的字母.请你用列表法或画树状图法求出小明两次抽取的卡片中有一张是科技社团D的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+3经过点A(﹣1,0)、B(3,0)两点,且交y轴交于点C.
(1)求抛物线的解析式;
(2)点M是线段BC上的点(不与B、C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长;
(3)在(2)的条件下,连接NB,NC,是否存在点M,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com