精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,直线y=﹣5x+5x轴、y轴分别交于AC两点,抛物线yx2+bx+c经过AC两点,与x轴交于另一点B

1)求抛物线解析式及B点坐标;

2x2+bx+c5x+5的解集是   

3)若点M为抛物线上一动点,连接MAMB,当点M运动到某一位置时,ABM面积为ABC的面积的倍,求此时点M的坐标.

【答案】1)(50);(20≤x≤1;(3)(3,﹣4)或(3+24)或(324

【解析】

1)根据已知条件将A点、C点代入抛物线即可求解;

2)观察直线在抛物线上方的部分,根据抛物线与直线的交点坐标即可求解;

3)先设动点M的坐标,再根据两个三角形的面积关系即可求解.

1)因为直线y=﹣5x+5x轴、y轴分别交于AC两点,

所以当x0时,y5,所以C05

y0时,x1,所以A10

因为抛物线yx2+bx+c经过AC两点,

所以c51+b+50,解得b=﹣6

所以抛物线解析式为yx26x+5

y0时,0x26x+5.解得x11x25

所以B点坐标为(50).

答:抛物线解析式为yx26x+5B点坐标为(50);

2)观察图象可知:

x2+bx+c≤5x+5的解集是0≤x≤1

故答案为0≤x≤1

3)设Mmm26m+5

因为SABMSABC×4×58

所以×4|m26m+5|8

所以|m26m+5|±4

所以m26m+90m26m+10

解得m1m23m3±2

所以M点的坐标为(3,﹣4)或(3+24)或(324).

答:此时点M的坐标为(3,﹣4)或(3+24)或(324).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,将正方形绕点逆时针旋转后得到正方形,依此方式,绕点连续旋转2019次得到正方形,如果点的坐标为(10),那么点的坐标为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是等腰三角形,ABAC,点DAB上一点,过点DDEBCBC于点E,交CA延长线于点F

1)证明:ADF是等腰三角形;

2)若∠B60°BD4AD2,求EC的长,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知⊙O经过四边形ABCDBD两点,并与四条边分别交于点EFGH,且

1)如图①,连接BD,若BD是⊙O的直径,求证:∠A=∠C

2)如图②,若的度数为θ,∠Aα,∠Cβ,请直接写出θαβ之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场经营某种品牌的计算器,购进时的单价是20元,根据市场调查:在一段时间内,销售单价是30元时,销售量是600个,而销售单价每上涨1元,就会少售出10个.

(1)不妨设该种品牌计算器的销售单价为x元(x>30),请你分别用x的代数式来表示销售量y个和销售该品牌计算器获得利润w元,并把结果填写在表格中:

销售单价(元)

x(x>30)

销售量y(

   

销售计算器获得利润w(元)

   

(2)在第(1)问的条件下,若计算器厂规定该品牌计算器销售单价不低于35元,且商场要完成不少于500个的销售任务,求:商场销售该品牌计算器获得最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学课外兴趣活动小组准备围建一个矩形花草园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为16米(如图所示),设这个花草园垂直于墙的一边长为x米.

(1)若花草园的面积为100平方米,求x

(2)若平行于墙的一边长不小于10米,这个花草园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图①,②,在矩形ABCD中,AB=4BC=8PQ分别是边BCCD上的点.

(1)如图①,若APPQBP=2,求CQ的长;

(2)如图②,若=2,且EFG分别为APPQPC的中点,求四边形EPGF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知m,n是方程x2-6x+5=0的两个实数根,且m<n,抛物线

y=-x2+bx+c的图象经过点A(m,0)、B(0,n).

(1)求这个抛物线的解析式;

(2)设(1)中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和BCD的面积;

(3)P是线段OC上的一点,过点P作PHx轴,与抛物线交于H点,若直线BC把PCH分成面积之比为2:3的两部分,请求出P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,校园空地上有一面墙,长度为4米,为了创建美丽校园,学校决定借用这面墙和20米的围栏围成一个矩形花园,设长为米,矩形花园的面积为平方米.

1)如图1,若所围成的矩形花园边的长不得超出这面墙,求关于的函数关系式,并写出自变量的取值范围;

2)在(1)的条件下,当为何值时,矩形花园的面积最大,最大值是多少?

3)如图2,若围成的矩形花园边的长可超出这面墙,求围成的矩形的最大面积.

查看答案和解析>>

同步练习册答案