精英家教网 > 初中数学 > 题目详情
2.如图,在平面直角坐标系中,抛物线y=-$\frac{1}{2}$x2+bx+c的图象过点E(-1,0)、点A(0,2)两点.
(1)求抛物线的解析式(关系式);
(2)直线y=-$\frac{1}{3}$x+2交x轴于点P,交y轴于点A.并与抛物线相交于A、B两点.
①在x轴的正半轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由;
②若抛物线与坐标轴的另一个交点为F,将线段EF在x轴上平移,当线段EF怎样平移时,四边形ABFE的周长最小?求出此时点E、F的坐标.

分析 (1)直接利用待定系数法将A,E点代入求出函数解析式即可;
(2)①利用直角三角形的性质利用∠AMB=90°或∠ABM=90°进而得出Rt△AOM∽Rt△MDB,Rt△BDM∽Rt△PBD,求出M点坐标即可;
②过点A作x轴的平行线,并且在这条平行线上截取线段AA′,使AA′=5作点B关于x轴的对称点B′,连接A′B′,交x轴于点F′,在x轴上截取线段E′F′=EF=5,则四边形ABF′E′的周长最小,再求出直线A′B′的解析式进而得出E,F点坐标.

解答 解:(1)∵抛物线y=-$\frac{1}{2}$x2+bx+c的图象过点A(0,2),E(-1,0),
∴$\left\{\begin{array}{l}{2=c}\\{0=-\frac{1}{2}-b+c}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{b=\frac{3}{2}}\\{c=2}\end{array}\right.$,
∴抛物线的解析式为:y=-$\frac{1}{2}$x2+$\frac{3}{2}$x+2;

(2)①抛物线y=-$\frac{1}{2}$x2+$\frac{3}{2}$x+2与直线y=-$\frac{1}{3}$x+2交于A、B两点,
则点B的坐标为(x,-$\frac{1}{3}$x+2),
∴-$\frac{1}{2}$x2+$\frac{3}{2}$x+2=-$\frac{1}{3}$x+2,
解得:x1=0,x2=$\frac{11}{3}$,
∴B($\frac{11}{3}$,$\frac{7}{9}$).
设在x轴的正半轴上存在点M,使得△MAB是直角三角形,即∠AMB=90°或∠ABM=90°
如图1,若∠AMB=90°,则M点是以AB为直径的圆与x轴的交点.
过点B作BD⊥x轴于点D.则D($\frac{11}{3}$,0)设M(m,0),则MD=$\frac{11}{3}$-m.
∵BM⊥AM,则有Rt△AOM∽Rt△MDB,
∴$\frac{OM}{BD}$=$\frac{OA}{MD}$,即 OM×MD=OA×BD,
∴$m(\frac{11}{3}-m)=2×\frac{7}{9}$,
化简得:m2-$\frac{11}{3}$m+$\frac{14}{9}$=0,
解得:m1=$\frac{11+\sqrt{65}}{6}$,m2=$\frac{11-\sqrt{65}}{6}$,
∴此时M点坐标为($\frac{11+\sqrt{65}}{6}$,0),($\frac{11-\sqrt{65}}{6}$,0);
如图1,若∠ABM=90°,过点B作AP的垂线交x轴的正半轴于点M.
设M(n,0),则MD=$\frac{11}{3}$-n.
∵直线y=-$\frac{1}{3}$x+2交x轴于点P,则得P(6,0)
∵BM⊥AB,BD⊥x轴,∴Rt△BDM∽Rt△PBD
$\frac{MD}{BD}$=$\frac{BD}{DP}$,即 MD×DP=BD2
∴$(6-\frac{11}{3})(\frac{11}{3}-n)={(\frac{7}{9})^2}$,
解得:n=$\frac{92}{27}$,
∴此时M点坐标为($\frac{92}{27}$,0);
综上所述,在x轴的正半轴上存在使△MAB为直角三角形的点为:
M1($\frac{11-\sqrt{65}}{6}$,0),M2($\frac{11+\sqrt{65}}{6}$,0),${M_3}({\frac{92}{27},0})$;

②∵点F为抛物线y=-$\frac{1}{2}$x2+$\frac{3}{2}$x+2与坐标轴的另一个交点,
则可得F(4,0),
∴EF=5.
如图2,
过点A作x轴的平行线,并且在这条平行线上截取线段AA′,使AA′=5
作点B关于x轴的对称点B′,连接A′B′,交x轴于点F′,
在x轴上截取线段E′F′=EF=5,则四边形ABF′E′的周长最小.
A(0,2),∴A′(5,2),
∵B($\frac{11}{3}$,$\frac{7}{9}$),
∴B′($\frac{11}{3}$,-$\frac{7}{9}$).
设直线A′B′的解析式为y=kx+b,
则$\left\{\begin{array}{l}{5k+b=2}\\{\frac{11}{3}k+b=-\frac{7}{9}}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=\frac{25}{12}}\\{b=-\frac{101}{12}}\end{array}\right.$,
∴直线A′B′的解析式为:$y=\frac{25}{12}x-\frac{101}{12}$,
当y=0时,$\frac{25}{12}x-\frac{101}{12}=0$,
解得$x=\frac{101}{25}$.
当线段EF向右平移$\frac{1}{25}$单位长度时,四边形ABFE的周长最小,
此时点E的坐标为($-\frac{24}{25}$,0),点F的坐标为($\frac{101}{25}$,0).

点评 此题主要考查了二次函数综合以及待定系数法求一次函数与二次函数解析式、相似三角形的判定与性质等知识,利用分类讨论得出是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

12.如图,铁道口的栏杆的短臂长1.25米,长臂长5.5米,当短臂端点下降0.85米时,长臂端点升高多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.已知点A(1,-1),点B(2,0),点M为横坐标轴上一动点,要使MA=MB,则M的坐标为(1,0).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.计算:
$\sqrt{{(-2)}^{2}}$=2;
${(-\sqrt{3})}^{2}$=3;
化简:$\sqrt{6\frac{1}{4}}$=$\frac{5}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.先化简,再求值:$\frac{x-3}{2x-4}$÷($\frac{5}{x-2}$-x-2),其中x=$\sqrt{3}$-3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.在直角坐标系中,已知点A(3,2),作点A关于y轴的对称点为A1,作点A1关于原点的对称点为A2,作点A2关于x轴的对称点为A3,作点A3关于y轴的对称点为A4,…按此规律,则点A8的坐标为多少;若求A2013的坐标,你能很快求出吗?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知,如图,梯形ABCD中,AD∥BC,AD=m,BC=n,E、F分别是AD、BC的中点,AF与BE相交于点G,EC与DF相交于点H.求证:
(1)GH∥BC;
(2)求GH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.x2-5x+k中,有一个因式为(x-2),则k的值为(  )
A.3B.-3C.6D.-6

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,直线a∥b,则∠A=20°,若作BH⊥AC于H,则∠ABH=70°.

查看答案和解析>>

同步练习册答案