【题目】如图,已知抛物线的图像经过点,,其对称轴为直线:,过点作轴交抛物线于点,的平分线交线段于点,点是抛物线上的一个动点,设其横坐标为.
(1)求抛物线的解析式;
(2)如图1,动点在直线下方的抛物线上,连结,当为何值时,四边形面积最大,并求出其最大值,
(3)如图②,是抛物线的对称轴上的一点,连接,在抛物线轴下方的图像上是否存在点使满足:①;②?若存在,求点的坐标,若不存在,请说明理由.
【答案】(1)y=x2-4x+3;(2),当=时,四边形面积最大,最大值是;(3)或
【解析】
(1)首先根据对称性得出抛物线与轴的另一个交点坐标,然后根据两坐标设抛物线解析式,代入点A的坐标,即可得解;
(2)设P坐标,过点P作PF||轴,将四边形OPCE的面积表示为:,计算即可;
(3)区分为P在对称轴左,右两侧进行讨论,借用,构造一线三角形相似,列出等量关系,计算即可.
(1)如图,设抛物线与轴的另一个交点为D
由对称性得:D(3,0)
设抛物线的解析式为:
把A(0,3)代入得:即
∴抛物线的解析式:
(2)如图,过点P作轴,交AC于点F
在中,点A与点C关于对称轴对称
∵A(0,3),∴C(4,3)
∵OE平分,且
∴
∴AE=AO=3
设,则
则,,
故
∵P在BC的下方
∴
∴当时,四边形OPCE的面积最大,最大值为:
(3)若点P在对称轴左侧,
过点P作交轴于点M,交于点N
由题得:
∴
∵,则,,
∴,解得
此时
若点P在对称轴右侧
过点P作交轴于点N,过点F作交MN于点M
由题得:
∴
∵,则,
∴,解得
此时
综上:点P为,.
科目:初中数学 来源: 题型:
【题目】(概念认识)
若以三角形某边上任意一点为圆心,所作的半圆上的所有点都在该三角形的内部或边上,则将符合条件且半径最大的半圆称为该边关联的极限内半圆.
如图①,点P是锐角△ABC的边BC上一点,以P为圆心的半圆上的所有点都在△ABC的内部或边上.当半径最大时,半圆P为边BC关联的极限内半圆.
(初步思考)
(1)若等边△ABC的边长为1,则边BC关联的极限内半圆的半径长为 .
(2)如图②,在钝角△ABC中,用直尺和圆规作出边BC关联的极限内半圆(保留作图痕迹,不写作法).
(深入研究)
(3)如图③,∠AOB=30°,点C在射线OB上,OC=6,点Q是射线OA上一动点.在△QOC中,若边OC关联的极限内半圆的半径为r,当1≤r≤2时,求OQ的长的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=x2﹣2x+k与x轴交于A、B两点,与y轴交于点C(0,﹣3).[图2、图3为解答备用图]
(1)k= ,点A的坐标为 ,点B的坐标为 ;
(2)设抛物线y=x2﹣2x+k的顶点为M,求四边形ABMC的面积;
(3)在x轴下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由;
(4)在抛物线y=x2﹣2x+k上求点Q,使△BCQ是以BC为直角边的直角三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线经过点,与轴交于点.
求这条抛物线的解析式;
如图1,点P是第三象限内抛物线上的一个动点,当四边形的面积最大时,求点的坐标;
如图2,线段的垂直平分线交轴于点,垂足为为抛物线的顶点,在直线上是否存在一点,使的周长最小?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.
(1)这两次各购进这种衬衫多少件?
(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1950元,则第二批衬衫每件至少要售多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(阅读理解)
我们将使得函数值为零的自变量的值称为函数的零点值,此时的点称为函数的零点.例如,对于函数y=x-1,令y=0,可得x=1,我们就说1是函数y=x-1的零点值,点(1,0)是函数y=x-1的零点.
(问题解决)
(1)已知函数,则它的零点坐标为________;
(2)若二次函数y=x2-2x+m有两个零点,则实数m的取值范围是________;
(3)已知二次函数的两个零点都是整数点,求整数k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“六一”儿童节前,玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.第一、二批玩具每套的进价分别是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,是一元二次方程的两个实数根,且,抛物线的图象经过点,,如图所示.
(1)求这个抛物线的解析式;
(2)设(1)中的抛物线与轴的另一个交点为,抛物线的顶点为,试求出点,的坐标,并判断的形状;
(3)点是直线上的一个动点(点不与点和点重合),过点作轴的垂线,交抛物线于点,点在直线上,距离点为个单位长度,设点的横坐标为,的面积为,求出与之间的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在当前国际“新冠肺炎”疫情防控的紧要关头,“中国制造”呈现出强大实力.据国家海关总局统计,4月25日当天,中国的口罩出口量就达10.6亿只.将数10.6亿用科学记数法表示为m10n,那么m,n的值分别为()
A.10.6,8B.10.6,9C.1.06,9D.1.06,10
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com