分析 由△DAC和△DBE都是等边三角形,利用等边三角形的性质得到两对边相等,两个角为60度,利用等式的性质得到夹角相等,利用SAS即可得证.
解答 证明:∵△DAC和△DBE都是等边三角形,
∴DA=DC,DB=DE,∠ADC=∠BDE=60°,
∴∠ADC+∠CDB=∠BDE+∠CDB,
即∠ADB=∠CDE,
在△DAB和△DCE中,$\left\{\begin{array}{l}{DA=DC}&{\;}\\{∠ADB=∠CDE}&{\;}\\{DB=DE}&{\;}\end{array}\right.$
∴△DAB≌△DCE(SAS).
点评 此题考查了全等三角形的判定与性质,以及等边三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 两点确定一条直线 | B. | 两点确定一条线段 | ||
C. | 两点之间,直线最短 | D. | 两点之间,线段最短 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com