精英家教网 > 初中数学 > 题目详情

【题目】阅读下列内容,并解决问题.

一道习题引发的思考

小明在学习《勾股定理》一章内容时,遇到了一个习题,并对有关内容进行了研究;

习题再现:

古希腊的哲学家柏拉图曾指出,如果表示大于1的整数,,那么为勾股数.你认为对吗?如果对,你能利用这个结论得出一些勾股数吗?

资料搜集:

定义:勾股数是指可以构成一个直角三角形三边的一组正整数.一般地,若三角形三边长都是正整数,且满足,那么称为一组勾股数.

关于勾股数的研究:我囯西周初数学家商高在公元前1000年发现了“勾三,股四,弦五”,这组数是世界上最早发现的一组勾股效,毕达哥拉斯学派、柏拉图学派、我国数学家刘徽、古希腊数学家丢番图都进行过勾股数的研究.习题中的表达式是柏拉图给出的勾股数公式,这个表达式未给出全部勾股数,世界上第一次给出勾股数通解公式的是《九幸算术),其勾股数公式为:,其中是互质的奇数.(注:的相同倍数组成的一组数也是勾股数)

问题解答:

1)根据柏拉图的研究,当时,请直接写出一组勾股数;

2)若表示大于1的整数,试证明是一组勾股数;

3)请举出一个反例(即写出一组勾股数),说明柏拉图给出的勾股数公式不能构造出所有的勾股数.

【答案】1(123537);(2)见解析;(3)反例:(51213)

【解析】

(1)直接代入即可求解;

(2)利用勾股定理的逆定理即可证明结论;

(3)柏拉图给出的勾股数公式不能构造出51213这组勾股数.

(1)直接代入

故答案为:(123537)

(2)表示大于1的整数,
都是正整数,且是最大边,

为勾股数;

(3)时,勾股数为(345)

时,勾股数为(8610)

时,勾股数为(15817)

(51213)是勾股数,而柏拉图给出的勾股数公式不能构造出.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在△ABC中,ABAC20tanB,点DBC边上的动点(D不与点BC重合).以D为顶点作∠ADE∠B,射线DEAC边于点E,过点AAF⊥AD交射线DE于点F,连接CF

1)求证:△ABD∽△DCE

2)当DE∥AB时(如图2),求AE的长;

3)点DBC边上运动的过程中,是否存在某个位置,使得DFCF?若存在,求出此时BD的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:

(1)A型自行车去年每辆售价多少元?

(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数都表示为两个素数的和”.如20=3+17.

(1)从7、11、19、23这4个素数中随机抽取一个,则抽到的数是7的概率是

(2)从7、11、19、23这4个素数中随机抽取1个数,再从余下的3个数中随机抽取1个数,用画树状图或列表的方法,求抽到的两个素数之和等于30的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点分别在的三边上,将沿翻折,顶点均落在内的点处,且重合于线段,若,则的度数为(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点为坐标原点,直线轴交于点,与轴交于点,直线轴交于点,且点与点关于轴对称.

1)求直线的解析式;

2)点为线段上一点,点为线段上一点,,连接,设点的横坐标为的面积为),求之间的函数关系式(不要求写出自变量的取值范围);

3)在(2)的条件下,当取最大值时,若点是平面内的一点,在直线上是否存在点,使得以点为顶点的四边形是菱形,若存在,请直接写出符合条件的点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,对角线ACBC,∠BAC30°BC2,在AB边的下方作射线AG,使得∠BAG30°E为线段DC上一个动点,在射线AG上取一点P,连接BP,使得∠EBP60°,连接EPAC于点F,在点E的运动过程中,当∠BPE60°时,则AF_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线yax2+2ax+ca≠0)与x轴交于点AB10)两点,与y轴交于点C,且OAOC

1)求抛物线的解析式;

2)点D是抛物线顶点,求ACD的面积;

3)如图2,射线AE交抛物线于点E,交y轴的负半轴于点F(点F在线段AE上),点P是直线AE下方抛物线上的一点,SABE,求APE面积的最大值和此动点P的坐标.

查看答案和解析>>

同步练习册答案