分析 由条件可知∠BDA=∠AEC=∠BAC,可得∠DBA=∠CAE,结合条件可证明△ABD≌△CAE,利用全等三角形的性质解答即可.
解答 解:∵∠BDA=∠AEC=∠BAC,
∴∠DBA+∠BAD=∠BAD+∠CAE,
∴∠DBA=∠CAE,
∵在△ADB和△CEA中,
$\left\{\begin{array}{l}{∠ABD=∠CAE}\\{∠BDA=∠AEC}\\{AB=CA}\end{array}\right.$,
∴△ADB≌△CEA(AAS),
∴BD=AE,AD=CE,
∴DE=AE+AD=BD+CE=3+6=9.
故答案为:9.
点评 本题主要考查全等三角形的判定和性质,由条件证明三角形全等得到BD=AE、CE=AD是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 4cm | B. | 6cm | C. | 8cm | D. | 9cm |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com