【题目】如图,在△ABC中,AB=AC,BC=8,点P由点B向点A运动,同时,点Q由点C出发沿线段AC的延长线运动,已知点P、Q运动速度相等,点Q与线段BC相交于点D,过点P作PE∥AQ,交BC于点E.
(1)如图1,求证:D为CE中点;
(2)如图2,过点P作PF⊥BC,垂足为点F,在P、Q的运动过程中,请判断DF的长度是否为定值;若是,请求出DF的长度;若否,请说明理由.
【答案】(1)见解析;(2)DF的长为定值,DF=4
【解析】
(1)先根据等腰三角形的性质和平行线的性质得出∠B=∠PEB,则有PB=PE,再根据P,Q速度相等通过等量代换得出PE=CQ,然后利用AAS证明△PDE≌△QDC,则有DE=DC,则 结论可证;
(2)由等腰三角形三线合一可得出BF=EF,则有DF=EF+DE=BC,因为BC是定值,所以DF也是定值.
(1)证明:∵点P、Q运动速度相等,点P、Q同时出发
∴BP=CQ
∵PE∥AQ
∴∠DPE=∠DQC,∠PEB=∠ACB
∵AB=AC
∴∠B=∠ACB
∴∠B=∠PEB
∴PB=PE
即:PE=CQ
在△PDE与△QDC中,
∴△PDE≌△QDC(AAS)
∴DE=DC
即:D为CE中点
(2)DF的长度是定值,
由(1)得:PB=PE,
∵PF⊥BC
∴BF=EF
由(1)得:DE=DC
∴EF=BE,DE=CE
∴DF=EF+DE=BE+CE=(BE+CE)=BC
∵BC=8
∴DF=4
故DF的长为定值,DF=4
科目:初中数学 来源: 题型:
【题目】“垃圾分类”意识已经深入人心.我校王老师准备用元(全部用完)购买两类垃圾桶,已知类桶单价元,类桶单价元,设购入类桶个,类桶个.
(1)求关于的函数表达式.
(2)若购进的类桶不少于类桶的倍.
①求至少购进类桶多少个?
②根据临场实际购买情况,王老师在总费用不变的情况下把一部分类桶调换成另一种类桶,且调换后类桶的数量不少于类桶的数量,已知类桶单价元,则按这样的购买方式,类桶最多可买 个.(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校八年级数学课外兴趣小组的同学积极参加义工活动,小庆对全体小组成员参加活动次数的情况进行统计解析,绘制了如下不完整的统计表和统计图(图).
次数 | 10 | 8 | 6 | 5 |
人数 | 3 | a | 2 | 1 |
(1)表中a= ;
(2)请将条形统计图补充完整;
(3)从小组成员中任选一人向学校汇报义工活动情况,参加了10次活动的成员被选中的概率有多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,海中有一小岛P,在距小岛P的海里范围内有暗礁,一轮船自西向东航行,它在A处时测得小岛P位于北偏东60°,且A、P之间的距离为32海里,若轮船继续向正东方向航行,轮船有无触礁危险?请通过计算加以说明.如果有危险,轮船自A处开始至少沿东偏南多少度方向航行,才能安全通过这一海域?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的三个顶点分别为A(-1,4),B(-5,3),C(-3,2).
(1)将△ABC向下平移6个单位后得到△A1B1C1,请在图中画出△A1B1C1,并写出C1点坐标;
(2)图中点A2(1,2)与点A关于直线l成轴对称,请在图中画出直线l及△ABC关于直线l对称的△A2B2C2,并写出B2点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图,在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列结论错误的是( ).
A.AE∥BC B. ∠ADE=∠BDC
C.△BDE是等边三角形 D. △ADE的周长是9
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).
(1)求证:AC=BD;
(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图③所示,图象过点(﹣1,0),对称轴为直线x=2,则下 列结论中正确的个数有( )
①4a+b=0;
②9a+3b+c<0;
③若点A(﹣3,y1),点B(﹣,y2),点C(5,y3)在该函数图象上,则y1<y3<y2;
④若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2 , 且x1<x2 , 则x1<﹣1<5<x2 .
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:
(1)∠BOC的度数;
(2)BE+CG的长;
(3)⊙O的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com