分析 作BE的中点E,连接AE、AD,根据直角三角形得到性质就可以得出AE=BE=EF,由BD平分∠ABC就可以得出∠ABE=∠DBC=22.5°,从而可以得出∠BAE=∠BAE=∠ACD=22.5°,∠AEF=45°,由∠BAC=90°,∠BDC=90°就可以得出A、B、C、D四点共圆,求出AD=DC,证△ADC≌△AEB推出BE=CD,从而得到结论.
解答 解:取BF的中点E,连接AE,AD,
∵∠BAC=90°,
∴AE=BE=EF,
∴∠ABD=∠BAE,
∵CD⊥BD,
∴A,B,C,D四点共圆,
∴∠DAC=∠DBC,
∵BF平分∠ABC,![]()
∴∠ABD=∠DBC,
∴∠DAC=∠BAE,
∴∠EAD=90°,
∵AB=AC,
∴∠ABC=45°,
∴∠ABD=∠DBC=22.5°,
∴∠AED=45°,
∴AE=AD,
在△ABE与△ADC中,
$\left\{\begin{array}{l}{∠ABE=∠DAC}\\{∠BAE=∠ACD}\\{AE=AD}\end{array}\right.$,
∴△ABE≌△ADC,
∴BE=CD,
∴BF=2CD.
点评 本题考查了全等三角形的判定和性质,等腰直角三角形的性质,四点共圆,直角三角形的性质,角平分线的性质,正确的作出辅助线是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com