精英家教网 > 初中数学 > 题目详情
19.已知,如图,AD=BC,AC=BD,AC与BD相交于点E.
求证:△EAB是等腰三角形.

分析 先用SSS证△ADB≌△BCA,得到∠DBA=∠CAB,利用等角对等边知AE=BE,从而证得△EAB是等腰三角形.

解答 证明:在△ADB和△BCA中,
$\left\{\begin{array}{l}{AD=BC}\\{AC=BD}\\{AB=BA}\end{array}\right.$,
∴△ADB≌△BCA(SSS),
∴∠DBA=∠CAB,
∴AE=BE,
∴△EAB是等腰三角形.

点评 本题考查了三角形全等判定及性质和等腰三角形的性质;三角形的全等的证明是正确解答本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.数学课上,同学们探究下面命题的正确性:
(1)顶角为36°的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形,为此,请你解答:如图,已知在△ABC中,AB=AC,∠A=36°,射线BD平分∠ABC交AC于点D.求证:△DAB与△BCD都是等腰三角形;
(2)在证明了该命题后,有同学发现:下面两个等腰三角形如图2也具有这种特性.请你在图2中分别画出一条线段,把它们分成两个小等腰三角形,并在图中标出所画等腰三角形两个底角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,直线y=x+1与x轴、y轴分别相交于点A、B,过点A的直线y=$\frac{1}{3}$x+b与y轴相交于点C.
(1)求直线AC的解析式;
(2)求直线AC关于直线AB对称的直线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.因式分解:
(1)4x-8xy
(2)a(m-n)-b(n-m)
(3)-2x3+18x       
(4)a2-2ab+b2-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在正方形网格上有一个△DEF.
(1)作△DEF关于直线HG的轴对称图形△ABC(不写作法);
(2)作EF边上的高(不写作法);
(3)若网格上的最小正方形边长为1,求△DEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,某学校的校门是一抛物线形状的建筑物,地面宽度为8m,两侧距地面6m高处各有一个挂校名横匾用的铁环,两铁环的水平距离为4m,则校门的高度为8m.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在Rt△AOB中,∠A=90°,∠AOB=60°,在边长为1的小正方形组成的网格中,△AOB的顶点O、A均在格点上,点B在x轴上,点A的坐标为(-1,2).
(1)点A关于点O中心对称的点的坐标为(1,-2);
(2)△AOB绕点O顺时针旋转60°后得到△A1OB1,那么点A1的坐标为(1,2);线段AB在旋转过程中所扫过的面积是$\frac{5π}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.中国民间乐器二胡的“千斤钩”钩在弦长的黄金分割点处音质最好,一把二胡的弦长为68cm,求“千金钩”上、下两部分弦长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,有一座抛物线形拱桥,当桥拱顶点距水面6m高时,桥下水面宽AB=20m.随着水位的上升,桥下水面的宽度逐渐减小,当水位上升到水面宽为10m(即CD位置)时,就达到了警戒线.

(1)在如图的直角坐标系中,求抛物线的函数表达式.
(2)当洪水来临时,水位以每小时0.2m的速度上升,多少时间后水位达到警戒线?

查看答案和解析>>

同步练习册答案