【题目】如图,点A在线段BD上,在BD的同侧作等腰和等腰,其中,CD与BE、AE分别交于点P、对于下列结论:
∽;;;.
其中正确的是
A. B. C. D.
【答案】D
【解析】
①根据两个三角形的两角相等证明相似三角形;
②根据两个三角形的两边比值相等证明△BAE∽△CAD即可的CD与BE的比值;
③根据△BAE∽△CAD,得∠BEA=∠CDA,再根据△PME∽△AMD,得MPMD=MAME;
④根据△PME∽△AMD ,得∠MPE=∠MAD=45°,再根据MPMD=MAME得△PMA∽△EMD,又因为∠APC=∠MAC=90°,∠ACP=∠MCA,所以△APC∽△MAC,则AC2=MCPC,再根据AC=BC,得2CB2=CPCM.
解:①在等腰Rt△ABC和等腰Rt△ADE中,∠CAB=∠EAD=45°,
所以∠CAM=90°,
又因为∠CMA=∠DME(对顶角),∠AED=∠CAM=90°,
所以△CAM∽△DEM,故①正确.
②在等腰Rt△ABC和等腰Rt△ADE中,∠CAB=∠EAD=45°,AC=AB,AD=AE,
所以∠CAB+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD,
又因为=,所以△BAE∽△CAD.
则CD=BE,故②正确.
③由②中△BAE∽△CAD,得∠BEA=∠CDA,
又因为∠BEA=∠AMD,所以△PME∽△AMD,
所以=,即MPMD=MAME,故③正确.
④,由③中△PME∽△AMD ,得∠MPE=∠MAD=45°,
因为MPMD=MAME,所以=,所以△PMA∽△EMD,
所以∠APM=∠DEM=90°,
因为∠APC=∠MAC=90°,∠ACP=∠MCA,
所以△APC∽△MAC,
所以=,即AC2=MCPC,
又因为AC=BC,
所以2CB2=CPCM,故④正确.
故选:D.
科目:初中数学 来源: 题型:
【题目】如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.
(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;
(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线y=ax2+bx经过点A(2,4)和点B(6,0).
(1)求这条抛物线所对应的二次函数的解析式;
(2)直接写出它的开口方向、顶点坐标;
(3)点(x1,y1),(x2,y2)均在此抛物线上,若x1>x2>4,则y1 ________ y2(填“>”“=”或“<”).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.
(1)求k、b的值;
(2)若点D在y轴负半轴上,且满足S△COD=S△BOC,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B落在CD边上(如图①),再沿CH折叠,这时发现点E恰好与点D重合(如图②)
(1)根据以上操作和发现,求的值;
(2)将该矩形纸片展开.
①如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:∠HPC=90°;
②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P点,要求只有一条折痕,且点P在折痕上,请简要说明折叠方法.(不需说明理由)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知∠AOB=30°,点P在∠AOB的内部,P1与P关于OA对称,P2与P关于OB对称,则△P1OP2是
A. 含30°角的直角三角形 B. 顶角是30的等腰三角形
C. 等边三角形 D. 等腰直角三角形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动,快车离乙地的路程()与行驶的时间()之间的函数关系,如图中线段所示,慢车离乙地的路程()与行驶的时间()之间的函数关系,如图中线段所示,则快、慢车相距225时,行驶的时间是( )
A.1B.3C.1或3D.2或4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是( )
A. B. 2- C. 2- D. 4-
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学习小组由3名男生和1名女生组成,在一次合作学习后,开始进行成果展示.
(1)如果随机抽取1名同学单独展示,那么女生展示的概率为 ;
(2)如果随机抽取2名同学共同展示,求同为男生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com