| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | 1 | D. | $\sqrt{2}$ |
分析 设Q是AB的中点,连接DQ,先证得△AQD≌△AOE,得出QD=OE,根据点到直线的距离可知当QD⊥BC时,QD最小,然后根据等腰直角三角形的性质求得QD⊥BC时的QD的值,即可求得线段OE的最小值.
解答
解:设Q是AB的中点,连接DQ,
∵∠BAC=∠DAE=90°,
∴∠BAC-∠DAC=∠DAE-∠DAC,
即∠BAD=∠CAE,
∵AB=AC=2,O为AC中点,
∴AQ=AO,
在△AQD和△AOE中,
$\left\{\begin{array}{l}{AQ=AO}\\{∠QAD=∠OAE}\\{AD=AC}\end{array}\right.$,
∴△AQD≌△AOE(SAS),
∴QD=OE,
∵点D在直线BC上运动,
∴当QD⊥BC时,QD最小,
∵△ABC是等腰直角三角形,
∴∠B=45°,
∵QD⊥BC,
∴△QBD是等腰直角三角形,
∴QD=$\frac{\sqrt{2}}{2}$QB,
∵QB=$\frac{1}{2}$AB=1,
∴QD=$\frac{\sqrt{2}}{2}$,
∴线段OE的最小值是为$\frac{\sqrt{2}}{2}$.
故选B.
点评 本题考查了等腰直角三角形的性质以及三角形全等的判定和性质,作出辅助线构建全等三角形是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com