精英家教网 > 初中数学 > 题目详情
19.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A-C-B-A运动,设运动时间为t秒(t>0).
(1)若点P在AC上,且满足PA=PB时,求出此时t的值;
(2)若点P恰好在∠BAC的角平分线上,求t的值;
(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.

分析 (1)设存在点P,使得PA=PB,此时PA=PB=2t,PC=4-2t,根据勾股定理列方程即可得到结论;
(2)当点P在∠CAB的平分线上时,如图1,过点P作PE⊥AB于点E,此时BP=7-2t,PE=PC=2t-4,BE=5-4=1,根据勾股定理列方程即可得到结论;
(3)在Rt△ABC中,根据勾股定理得到AC=4cm,根据题意得:AP=2t,当P在AC上时,△BCP为等腰三角形,得到PC=BC,即4-2t=3,求得t=$\frac{1}{2}$,当P在AB上时,△BCP为等腰三角形,若CP=PB,点P在BC的垂直平分线上,如图2,过P作PE⊥BC于E,求得t=$\frac{19}{4}$,若PB=BC,即2t-3-4=3,解得t=5,③PC=BC,如图3,过C作CF⊥AB于F,由射影定理得;BC2=BF•AB,列方程32=$\frac{2t-3-4}{2}$×5,即可得到结论.

解答 解:(1)设存在点P,使得PA=PB,
此时PA=PB=2t,PC=4-2t,
在Rt△PCB中,PC2+CB2=PB2
即:(4-2t)2+32=(2t)2
解得:t=$\frac{25}{16}$,
∴当t=$\frac{25}{16}$时,PA=PB;

(2)当点P在∠BAC的平分线上时,如图1,过点P作PE⊥AB于点E,
此时BP=7-2t,PE=PC=2t-4,BE=5-4=1,
在Rt△BEP中,PE2+BE2=BP2
即:(2t-4)2+12=(7-2t)2
解得:t=$\frac{8}{3}$,
∴当$t=\frac{8}{3}$时,P在△ABC的角平分线上;

(3)在Rt△ABC中,∵AB=5cm,BC=3cm,
∴AC=4cm,
根据题意得:AP=2t,
当P在AC上时,△BCP为等腰三角形,
∴PC=BC,即4-2t=3,
∴t=$\frac{1}{2}$,
当P在AB上时,△BCP为等腰三角形,
①CP=PB,点P在BC的垂直平分线上,
如图2,过P作PE⊥BC于E,
∴BE=$\frac{1}{2}$BC=$\frac{3}{2}$,
∴PB=$\frac{1}{2}$AB,即2t-3-4=$\frac{5}{2}$,解得:t=$\frac{19}{4}$,
②PB=BC,即2t-3-4=3,
解得:t=5,
③PC=BC,如图3,过C作CF⊥AB于F,
∴BF=$\frac{1}{2}$BP,
∵∠ACB=90°,
由射影定理得;BC2=BF•AB,
即33=$\frac{2t-3-4}{2}$×5,
解得:t=$\frac{53}{10}$,
∴当$t=\frac{1}{2},5,\frac{53}{10}或\frac{19}{4}$时,△BCP为等腰三角形.

点评 本题考查了等腰三角形的判定,三角形的面积,难度适中.利用分类讨论的思想是解(3)题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

9.如图,在菱形ABCD中,对角线BD=4$\sqrt{3}$,∠ABC=60°,对角线AC、BD交于点O,以点B为圆心,BC为半径作圆与BD交于点E,则图中阴影部分的面积为$\frac{4π}{3}$-2$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知二次函数y=-x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).
(1)求此二次函数的解析式;
(2)求二次函数图象与x轴的另一个交点的坐标;
(3)根据图象,写出函数值y为正数时,自变量x的取值范围;函数值y为负数时,自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.函数y=x2+2x-8与y轴的交点坐标是(0,-8).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=2,O为AC中点,若点D在直线BC上运动,连接OE,则在点D运动过程中,线段OE的最小值是为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.△ABC中,AB=AC,取BC边的中点D,作DE⊥AC于点E,取DE的中点F,连接BE,AF交于点H.
(1)如图1,如果∠BAC=90°,求证:AF⊥BE并求$\frac{AF}{BE}$的值;
(2)如图2,如果∠BAC=a,求证:AF⊥BE并用含a的式子表示$\frac{AF}{BE}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图所示,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上由B出发向C点运动,同时点Q在线段CA上由C点出发向A点运动.设运动时间为t秒.
(1)若点P的速度为3cm/s,用含t的式子表示第t秒时,BP=3tcm,CP=8-3tcm.
(2)若点Q运动速度与点P的运动速度相等,经过几秒钟△BPD与△CQP全等,说明理由;
(3)若点Q的运动速度与点P的运动速度不相等,且点P的速度比点Q的速度慢1cm/s时,点Q的运动速度为多少时?能够使△BPD≌△CQP?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,AD、BC相交于点O,AO=OD,只要添加以下条件中的一个条件,就能证明△ABO≌△DCO,则这样的条件有①②④⑤.
①∠A=∠D;②∠B=∠C;③AB=CD;④BO=OC;⑤AB∥CD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知AB两地相距50单位长度,小明从A地出发去B地,以每分钟2个单位长度的速度行进,第一次他向左1单位长度,第二次他向右2单位长度,第三次再向左3单位长度,第四次又向右4单位长度…,按此规律行进,如果A地在数轴上表示的数为-16.
(1)求出B地在数轴上表示的数;
(2)若B地在原点的右侧,经过第八次行进后小明到达点P,此时点P与点B相距几个单位长度?八次运动完成后一共经过了几分?
(3)若经过n次(n为正整数)行进后,小明到达的点Q,在数轴上点Q表示的数应如何表示?

查看答案和解析>>

同步练习册答案