【题目】如图,在等边△ABC中,线段AM为BC边上的高.动点D在射线AM上时,以CD为一边在CD的下方作等边△CDE,连结BE.
(1)填空:∠ACB=______度;
(2)若点D在线段AM上时,求证:△ADC≌△BEC;
(3)当动点D在射线AM上时,设直线BE与直线AM的交点为O,试判断∠AOB是否为定值?并说明理由.
【答案】(1)60;(2)见解析;(3)∠AOB是定值,∠AOB=60°,理由见解析
【解析】
(1)根据等边三角形的每一个内角都等于60°进行解答;
(2)根据等边三角形的性质就可以得出AC=BC,DC=EC,∠ACB=∠DCE=60°,由等式的性质就可以∠ACD=∠BCE,根据SAS就可以得出△ADC≌△BEC;
(3)分两种情况讨论:当点D在线段AM上时,如图1,由(2)可知△ACD≌△BCE,即可以求出结论;当点D在线段AM的延长线上时,如图2,可以得出△ACD≌△BCE,进而得到∠CBE=∠CAD=30°,即可得出结论.
(1)∵△ABC是等边三角形,∴∠ACB=60°.
故答案为:60;
(2)∵△ABC与△DEC都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE.
在△ADC和△BEC中,∵,∴△ACD≌△BCE(SAS);
(3)∠AOB是定值,∠AOB=60°.理由如下:
∵AD为等边三角形的高,∴∠AMC=∠AMB=90°,∠CAO∠BAC=30°,∠ACB=60°,分两种情况讨论:
①当点D在线段AM上时,如图1,由(2)可知△ACD≌△BCE,则∠CBE=∠CAD=30°.
又∵∠AMC=∠BMO=90°,∴∠AOB=90°-30°=60°.
②当点D在线段AM的延长线上时,如图2.
∵△ABC与△DEC都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE.
在△ACD和△BCE中,∵,∴△ACD≌△BCE(SAS),∴∠CBE=∠CAD=30°.
又∵∠AMC=∠BMO=90°,∴∠AOB=90°-30°=60°.
综上所述:当动点D在射线AM上时,∠AOB为定值60°.
科目:初中数学 来源: 题型:
【题目】如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.试回答:
(1)图中等腰三角形是 .猜想:EF与BE、CF之间的关系是 .理由:
(2)如图②,若AB≠AC,图中等腰三角形是 .在第(1)问中EF与BE、CF间的关系还存在吗?
(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下面的三行单项式
x,2x2,4x3,8x4,16x5…①
﹣2x,4x2,﹣8x3,16x4,﹣32x5…②
2x,﹣3x2,5x3,﹣9x4,17x5…③
根据你发现的规律,完成以下各题:
(1)第①行第8个单项式为 ;第②行第2020个单项式为 .
(2)第③行第n个单项式为 .
(3)取每行的第9个单项式,令这三个单项式的和为A.计算当x=时,256(A+)的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形网格中,每个小正方形的边长都是1,每个小正方形的顶点叫做格点.网格中有一个格点△ABC(即三角形的顶点都在格点上).
(1)在图中作出△ABC关于直线l对称的△A1B1C1 (要求A与A1,B与B1,C与C1相对应);
(2)求△ABC的面积;
(3)在直线l上找一点P,使得△PAC的周长最小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AB⊥BD,sinA=,将ABCD放置在平面直角坐标系中,且AD⊥x轴,点D的横坐标为1,点C的纵坐标为3,恰有一条双曲线y=(k>0)同时经过B、D两点,则点B的坐标是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查文化艺术节上,小明参加学校组织的“一站到底”活动,答对最后两道单选题就通关:第一道单选题有A、B、C共3个选项,第二道单选题有A、B、C、D共4个选项,这两道题小明都不会,不过小明还有一次“求助”的机会没有用(使用“求助可以让主持人去掉其中一题的一个错误选项).
(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是 ;
(2)如果小明决定第一题不使用“求助”,第二题使用“求助”,请用树状图或者列表来分析小明通关的概率;
(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是( )
A. 在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
B. 一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃
C. 暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球
D. 掷一个质地均匀的正六面体骰子,向上的面点数是4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)如图,ABCD中,点E,F在直线AC上(点E在F左侧),BE∥DF.
(1)求证:四边形BEDF是平行四边形;
(2)若AB⊥AC,AB=4,BC=,当四边形BEDF为矩形时,求线段AE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com