精英家教网 > 初中数学 > 题目详情

【题目】如图,将的长方形纸片沿过项点的直线为折痕折叠时,点与边上的点重合,试分别求出的长.

【答案】DQ=6PQ=5.

【解析】

由折叠的性质可知△ABPAQP,根据全等三角形的性质可知AB=AQ=10,利用勾股定理即可求出线段DQ的长度;由DQ=6,得出CQ=DC-DQ=4,设PQ=x,则PB=PQ=x,所以CP=BC-BP=8-x,利用勾股定理可建立关于x的方程,解方程求出x的值即可.

解:由折叠的性质可知△ABPAQP

AB=AQ=10

∵四边形ABCD是矩形,

∴∠D=90°

AD=8cm

∴线段DQ的长度是6cm

由(1)可知DQ=6

CQ=DC-DQ=4

PQ=x,则PB=PQ=x

CP=BC-BP=8-x

x2=42+8-x2

解得:x=5

∴线段PQ的长度是5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知反比例函数y=的图象与直线y=﹣x+b都经过点A(1,4),且该直线与x轴的交点为B.

(1)求反比例函数和直线的解析式;

(2)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DFMN分别是DCDF的中点,连接MN.AB=7BE=5,则MN=_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+cx轴交于AB两点,与y轴交于点C,已知A﹣10),C03

1)求该抛物线的表达式;

2)求BC的解析式;

3)点M是对称轴右侧点B左侧的抛物线上一个动点,当点M运动到什么位置时,BCM的面积最大?求BCM面积的最大值及此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是等边三角形,旋转后能与重合.

1)旋转中心是哪一点?

2)旋转角度是多少度?

3)连结后,是什么三角形?简单说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB=10°,点POB上.以点P为圆心,OP为半径画弧,交OA于点P1(点P1与点O不重合),连接PP1;再以点P1为圆心,OP为半径画弧,交OB于点P2(点P2与点P不重合),连接P1 P2;再以点P2为圆心,OP为半径画弧,交OA于点P3(点P3与点P1不重合),连接P2 P3;……

请按照上面的要求继续操作并探究:

P3 P2 P4=_____°;按照上面的要求一直画下去,得到点Pn若之后就不能再画出符合要求点Pn+1了,则n=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市对今年元旦期间销售ABC三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:

1)该超市元旦期间共销售   个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是   度;

2)补全条形统计图;

3)如果该超市的另一分店在元旦期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,D是等边ABCAB上的一点,且ADDB12,现将ABC折叠,使点CD重合,折痕为EF,点EF分别在ACBC上,则CECF的值为(   )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,ABACDBC边的中点,点E与点D关于AB对称,连接AEBE,分别延长AECB交于点F,若∠F48°,则∠C的度数是(  )

A. 21°B. 52°C. 69°D. 74°

查看答案和解析>>

同步练习册答案