精英家教网 > 初中数学 > 题目详情

【题目】如下图中的图象(折线ABCDE)描述了一汽车在某一直路上的行驶过程中,汽车离出发地的距离S(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:

汽车在途中停留了0.5小时;

汽车行驶3小时后离出发地最远;

汽车共行驶了120千米;

汽车返回时的速度是80千米/小时.

其中正确的说法共有(  )

A. 1B. 2C. 3D. 4

【答案】C

【解析】

根据函数图像与描述即可进行判断.

汽车在途中停留了2-1.5=0.5小时,正确;

汽车行驶3小时后离出发地最远,正确;

汽车共行驶了120+120=240千米,故错误;

汽车返回时的速度是120÷(4.5-3=80千米/小时,正确.

故正确的个数为3,故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,∠AEM30°CEMN,垂足为点E,∠CDN150°EC平分∠AEF

1)求∠C的度数;

2)求证:∠FDE=∠FED

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,在菱形中,对角线相交于点

1)求证:四边形是矩形;

2)若,求四边形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点,点分别在轴和轴的正半轴上,且满足.

(1)求点、点的坐标;

(2)若点从点出发,以每秒1个单位长度的速度沿射线CB运动,连结AP,设的面积为,点的运动时间为秒,求的函数关系式,并写出自变量的取值范围;

(3)(2)的条件下,是否存在点,使得以点为顶点的三角形与相似,若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,8个完全相同的小矩形拼成了一个大矩形,AB是其中一个小矩形的对角线,请在大矩形中完成下列画图,要求:仅用无刻度的直尺;保留必要的画图痕迹.

(1)在图1中画出一个45°的角,使点A或者点B是这个角的顶点,且AB为这个角的一边.

(2)在图2中画出线段AB的垂直平分线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两公司为“见义勇为基金会”各捐款3000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.请你根据上述信息,就这两个公司的“人数”或“人均捐款”提出一个用分式方程解决的题,并写出解题过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商厦进货员预测一种应季衬衫能畅销市场,就用万元购进这种衬衫,面市后果然供不应求.商厦又用万元购进第二批这种衬衫,所购数量是第一批进量的倍,但单价贵了.商厦销售这种衬衫时每件定价元,最后剩下件按八折销售,很快售完.在这两笔生意中,商厦共盈利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“如图1,在Rt△ABC中,∠ACB=90°,CD是△ABC的高,则△ACD与△CBD相似吗?”于是,学生甲发现CD2=AD·BD也成立.

问题1:请你证明CD2=AD·BD

学生乙从CD2=AD·BD中得出:可以画出两条已知线段的比例中项.

问题2:已知两条线段ABBCx轴上,如图2:请你用直尺(无刻度)和圆规作出这两条线段的比例中项.要求保留作图痕迹,不要写作法,最后指出所要作的线段.

学生丙也从CD2=AD·BD中悟出了矩形与正方形的等积作法.

问题3:如图3,已知矩形ABCD,请你用直尺(无刻度)和圆规作出一个正方形BMNP,使得S正方形BMNP=S矩形ABCD.要求:保留作图痕迹;简要写出作图每个步骤的要点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1,在正方形ABCD中,EAB上一点,FAD延长线上一点,且DFBE.求证:CECF

2)如图2,在正方形ABCD中,EAB上一点,GAD上一点,如果∠GCE45°,请你利用(1)的结论证明:GEBEGD

3)运用(1)(2)解答中所积累的经验和知识,完成下题:

如图3,在直角梯形ABCD中,AD∥BCBCAD),∠B90°ABBCEAB上一点,且∠DCE45°BE4DE="10," 求直角梯形ABCD的面积.

查看答案和解析>>

同步练习册答案