【题目】阅读下面材料并解决有关问题:
我们知道:|x|=,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1,x=2(称﹣1,2分别为|x+1|与|x﹣2|的零点值).在实数范围内,零点值x=﹣1和x=2可将全体实数分成不重复且不遗漏的如下3种情况:①x<﹣1;②﹣1≤x<2;③x≥2.
从而化简代数式|x+1|+|x﹣2|可分以下3种情况:
①当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;
②当﹣1≤x<2时,原式=x+1﹣(x﹣2)=3;
③当x≥2时,原式=x+1+x﹣2=2x﹣1;
综上讨论,原式=
通过以上阅读,请你解决以下问题:
(1)当x<2时,|x﹣2|= ;
(2)根据材料中的方法化简代数式|x+2|+|x﹣4|;(写出解答过程)
(3)直接写出|x﹣1|﹣4|x+1|的最大值 .
科目:初中数学 来源: 题型:
【题目】如图,下列推理所注理由正确的是( )
A.∵DE∥BC,∴∠1=∠C(同位角相等,两直线平行)
B.∵∠2=∠3,∴DE∥BC(两直线平行,内错角相等)
C.∵DE∥BC,∴∠2=∠3(两直线平行,内错角相等)
D.∵∠DEC+∠C=180°,∴DE∥BC(同旁内角相等,两直线平行)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:b是最小的正整数,且a、b满足,请回答问题:
(1)请直接写出a、b、c的值: a=______; b=________; c=________.
(2)a、b、c所对应的点分别为A、B、C,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,试计算此时BC—AB的值.
(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和x(x>3)个单位长度的速度向右运动,请问:是否存在x,使BC-AB的值随着时间t的变化而不变,若存在求出x;不存在请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.结论:①EG⊥FH;②四边形EFGH是矩形;③HF平分∠EHG;④EGBC;⑤四边形EFGH的周长等于2AB.其中正确的个数是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】任何一个整数N,可以用一个多项式来表示:
,例如:325=3×102+2×10+5.
一个正两位数的个位数字是x,十位数字是y.
(1)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新数与原数的和能被11整除;
(2)若试求出符合条件的所有两位数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=4,点E在对角线AC上,连接BE、DE,
(1)如图1,作EM⊥AB交AB于点M,当AE=时,求BE的长;
(2)如图2,作EG⊥BE交CD于点G,求证:BE=EG;
(3)如图3,作EF⊥BC交BC于点F,设BF=x,△BEF的面积为y.当x取何值时,y取得最大值,最大值是多少?当△BEF的面积取得最大值时,在直线EF取点P,连接BP、PC,使得∠BPC=45°,求EP的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°,AC=3,BC=4,分别以AB、AC、BC为边在AB同侧作正方形ABEF、ACPQ、BCMN,四块阴影部分的面积分别为S1、S2、S3、S4.则S1-S2+S3+S4等于( )
A. 4B. 6C. 8D. 10
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com