分析 (1)即证∠MAC+∠CAB=90°.因为AB为直径,所以∠ACB=90°,∠ABC+∠CAB=90°.由∠MAC=∠ABC得证;
(2)①证明∠BDE=∠DGF即可.∠BDE=90°-∠ABD;∠DGF=∠CGB=90°-∠CBD.因为D是弧AC的中点,所以∠ABD=∠CBD.问题得证;②连接AD、CD,作DH⊥BC,交BC的延长线于H点.证明Rt△ADE≌Rt△CDH,得AE=CH.根据AB=BH求解.
解答 (1)证明:∵AB是直径,
∴∠ACB=90°,
∴∠CAB+∠ABC=90°;
∵∠MAC=∠ABC,
∴∠MAC+∠CAB=90°,即MA⊥AB,
∴MN是⊙O的切线;
(2)①证明:∵D是弧AC的中点,
∴∠DBC=∠ABD,
∵AB是直径,![]()
∴∠CBG+∠CGB=90°,
∵DE⊥AB,
∴∠FDG+∠ABD=90°,
∵∠DBC=∠ABD,
∴∠FDG=∠CGB=∠FGD,
∴FD=FG;
②解:连接AD、CD,作DH⊥BC,交BC的延长线于H点.
∵∠DBC=∠ABD,DH⊥BC,DE⊥AB,
∴DE=DH,
在Rt△BDE与△RtBDH中,$\left\{\begin{array}{l}{DH=DE}\\{BD=BD}\end{array}\right.$,
∴△RtBDE≌△RtBDH,
∴BE=BH,
∵D是弧AC的中点,
∴AD=DC,
在Rt△ADE与Rt△CDH中,$\left\{\begin{array}{l}{DE=DH}\\{AD=CD}\end{array}\right.$,
∴Rt△ADE≌Rt△CDH.
∴AE=CH.
∴BE=AB-AE=BC+CH=BH,即3-AE=2+AE,
∴AE=$\frac{1}{2}$.
点评 此题考查了切线的判定、等腰三角形的判定、三角形全等等知识点,综合性强;特别是最后一个问题正确的作出辅助线构造全等三角形求解是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{1}{4}π-\frac{1}{2}$ | B. | $π-\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}π$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com